Biomedical Engineering Reference
In-Depth Information
requirements. These requirements can be derived from the realistic measurements
presented in this chapter.
For free head motion during application, the maximum translational head
motion can be up to 100 mm. In order to compensate this motion, a radius at of
least 200 mm is required. However, to allow for coil placement all around the
head, the size of the head must be taken into account, too. Typically, we can
estimate the size of the head with a diameter of roughly 200 mm. Thus, the robotic
system should provide a workspace with a radius of at least 200 mm to allow for
motion compensation and coil placement.
Even though head motion is typically relatively slow with roughly 1.7 mm/s on
average, sudden rapid head movements can occur with a velocity of up to 85 mm/s.
For compensation of most of the head motion, a velocity of 10 mm/s should
therefore be required for the robotic system.
References
1. Artacho-Pérula, E., Arbizu, J., del Mar Arroyo-Jimenez, M., Marcos, P., Martinez-Marcos,
A., Blaizot, X., Insausti, R.: Quantitative estimation of the primary auditory cortex in human
brains. Brain Res. 1008(1), 20-28 (2004). doi: 10.1016/j.brainres.2004.01.081
2. Balslev, D., Braet, W., McAllister, C., Miall, R.C.: Inter-individual variability in optimal
current direction for transcranial magnetic stimulation of the motor cortex. J. Neurosci.
Methods 162(1-2), 309-313 (2007). doi: 10.1016/j.jneumeth.2007.01.021
3. Brasil-Neto, J.P., Cohen, L.G., Panizza, M., Nilsson, J., Roth, B.J., Hallett, M.: Optimal focal
transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape
of the induced current pulse, and stimulus intensity. J. Clin. Neurophysiol. 9(1), 132-136
(1992)
4. Ernst, F., Richter, L., Matthäus, L., Martens, V., Bruder, R., Schlaefer, A., Schweikard, A.:
Non-orthogonal tool/flange and robot/world calibration for realistic tracking scenarios. Int.
J. Med. Robot. Comput. Assist. Surg. 8(4), 407-420 (2012). doi: 10.1002/rcs.1427
5. Fürweger, C., Drexler, C., Kufeld, M., Muacevic, A., Wowra, B., Schlaefer, A.: Patient
motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free
cases.
Int.
J.
Radiat.
Oncol.
Biol.
Phys.
78(3),
937-945
(2010).
doi: 10.1016/
j.ijrobp.2009.11.030
6. Knecht,
S.,
Sommer,
J.,
Deppe,
M.,
Steinsträter,
O.:
Scalp
position
and
efficacy
of
transcranial
magnetic
stimulation.
Clin.
Neurophysiol.
116(8),
1988-1993
(2005).
doi: 10.1016/j.clinph.2005.04.016
7. Langguth, B., De Ridder, D., Dornhoffer, J.L., Eichhammer, P., Folmer, R.L., Frank, E.,
Fregni, F., Gerloff, C., Khedr, E., Kleinjung, T., Landgrebe, M., Lee, S., Lefaucheur, J.P.,
Londero, A., Marcondes, R., Moller, A.R., Pascual-Leone, A., Plewnia, C., Rossi, S.,
Sanchez, T., Sand, P., Schlee, W., Steffens, T., Van de Heyning, P., Hajak, G.: Controversy:
does repetitive transcranial magnetic stimulation/ transcranial direct current stimulation show
efficacy in treating tinnitus patients? Brain Stimul. 1, 192-205 (2008)
8. Langguth, B., Kleinjung, T., Landgrebe, M., Ridder, D.D., Hajak, G.: rTMS for the treatment
of tinnitus: the role of neuronavigation for coil positioning. Clin. Neurophysiol. 40(1), 45-58
(2010). doi: 10.1016/j.neucli.2009.03.001
9. Londero, A., Langguth, B., Ridder, D.D., Bonfils, P., Lefaucheur, J.P.: Repetitive transcranial
magnetic
stimulation
(rtms):
a
new
therapeutic
approach
in
subjective
tinnitus?
Clin.
Neurophysiol. 36(3), 145-155 (2006). doi: 10.1016/j.neucli.2006.08.001
 
Search WWH ::




Custom Search