Biomedical Engineering Reference
In-Depth Information
case of cardiovascular implants or devices, emboli may be
shed when such a surface is exposed to flowing blood
( Hoffman et al. , 1982 ). This can lead to undesirable
consequences, even though (or perhaps especially be-
cause) the surface is an effective NFS. In the case of
contact lenses, a protein-free lens may seem desirable,
but there are concerns that such a lens will not be com-
fortable. Although biomaterials scientists can presently
create surfaces that are nonfouling for a period of time,
applying such surfaces must take into account the spe-
cific application, the biological environment, and the
intended service life.
Bibliography
Antonsen, K. P., and Hoffman, A. S.
(1992). Water structure of PEG
solutions by DSC measurements. in
Polyethylene Glycol Chemistry:
Biotechnical and Biomedical
Applications, J. M. Harris, ed. Plenum
Press, New York, pp. 15-28.
Bohnert, J. L., Horbett, T. A., Ratner, B. D.,
and Royce, F. H. (1988). Adsorption of
proteins from artificial tear solutions to
contact lens materials. Invest.
Ophthalom. Vis. Sci. 29(3): 362-373.
Brash, J. L., Uniyal, S., and Samak, Q.
(1974). Exchange of albumin adsorbed
on polymer surfaces. Trans. Am. Soc.
Artif. Int. Organs 20: 69-76.
Chapman, R. G., Ostuni, E., Takayama, S.,
Holmlin, R. E., Yan, L., and Whitesides,
G. M. (2000). Surveying for surfaces
that resist the adsorption of proteins. J.
Am. Chem. Soc. 122: 8303-8304.
Davis, F. F. (2002). The origin of
pegnology. Adv. Drug. Del. Revs. 54:
457-458.
Feldman, K., Hahner, G., Spencer, N. D.,
Harder, P., and Grunze, M. (1999).
Probing resistance to protein adsorption
of oligo(ethylene glycol)-terminated
self-assembled monolayers by scanning
force microscopy. J. Am. Chem. Soc.
121(43): 10134-10141.
Gombotz, W. R., Wang, G. H., Horbett, T.
A., and Hoffman, A. S. (1991). Protein
adsorption to PEO surfaces. J. Biomed.
Mater. Res. 25: 1547-1562.
Harder, P., Grunze, M., Dahint, R.,
Whitesides, G. M., and Laibinis, P. E.
(1998). Molecular conformation and
defect density in oligo(ethylene glycol)-
terminated self-assembled monolayers
on gold and silver surfaces determine
their ability to resist protein adsorption.
J. Phys. Chem. B 102: 426-436.
Hoffman, A. S. (1986). A general
classification scheme for hydrophilic
and hydrophobic biomaterial surfaces.
J. Biomed. Mater. Res. 20: ix.
Hoffman, A. S. (1999). Non-fouling
surface technologies. J. Biomater. Sci.,
Polymer Ed. 10: 1011-1014.
Hoffman, A. S., Horbett, T. A., Ratner, B.
D., Hanson, S. R., Harker, L. A., and
Reynolds, L. O. (1982). Thrombotic
events on grafted polyacrylamide-
Silastic surfaces as studied in a baboon.
ACS Adv. Chem. Ser. 199: 59-80.
Horbett, T. A. (1993). Principles
underlying the role of adsorbed plasma
proteins in blood interactions with
foreign materials. Cardiovasc. Pathol. 2:
137S-148S.
Horbett, T. A., and Brash, J. L. (1987).
Proteins at interfaces: current issues
and future prospects. in Proteins at
Interfaces, Physicochemical and
Biochemical Studies, ACS Symposium
Series, Vol. 343, T. A. Horbett and
J. L. Brash, eds. American Chemical
Society, Washington, D.C., pp. 1-33.
Horbett, T. A., and Brash, J. L. (1995).
Proteins at interfaces: an overview. in
Proteins at Interfaces II: Fundamentals
and Applications, ACS Symposium
Series, Vol. 602, T. A. Horbett and
J. L. Brash, eds. American Chemical
Society, Washington, D.C., pp. 1-25.
Horbett, T. A., and Hoffman, A. S. (1975).
Bovine plasma protein adsorption to
radiation grafted hydrogels based on
hydroxyethyl-methacrylate and
N -vinylpyrrolidone, Advances in
Chemistry Series, Vol. 145, Applied
Chemistry at Protein Interfaces,
R. Baier, ed. American Chemical Society,
Washington D.C., pp. 230-254.
Iwasaki, Y., et al. (1999). Competitive
adsorption between phospholipid and
plasma protein on a phospholipid
polymer surface. J. Biomater. Sci.
Polymer Ed. 10: 513-529.
Johnston, E. E., Ratner, B. D., and Bryers,
J. D. (1997). RF plasma deposited
PEO-like films: Surface characterization
and inhibition of Pseudomonas
aeruginosa accumulation. in Plasma
Processing of Polymers, R. d 0 Agostino,
P. Favia and F. Fracassi, eds. Kluwer
Academic, Dordrecht, The
Netherlands, pp. 465-476.
Kane, R. S., Deschatelets, P., and
Whitesides, G. M. (2003).
Kosmotropes form the basis of
protein-resistant surfaces. Langmuir 19:
2388-2391.
Lasic, D. D., and Needham, D. (1995).
The ''stealth'' liposome: A prototypical
biomaterial. Chem. Rev. 95(8):
2601-2628.
Lim, K., and Herron, J. N. (1992).
Molecular simulation of protein-PEG
interaction. in Polyethylene Glycol
Chemistry: Biotechnical and Biomedical
Applications J. M. Harris, ed. Plenum
Press, New York, p. 29.
Lopez, G. P., Ratner, B. D., Tidwell, C. D.,
Haycox, C. L., Rapoza, R. J., and
Horbett, T. A. (1992). Glow discharge
plasma deposition of tetraethylene
glycol dimethyl ether for fouling-
resistant biomaterial surfaces. J.
Biomed. Mater. Res. 26(4): 415-439.
Luk, Y., Kato, M., and Mrksich, M. (2000).
Self-assembled monolayers of
alkanethiolates presenting mannitol
groups are inert to protein adsorption
and cell attachment. Langmuir 16: 9605.
Merrill, E. W. (1992). Poly(ethylene oxide)
and blood contact: a chronicle of one
laboratory. in Polyethylene Glycol
Chemistry: Biotechnical and Biomedical
Applications, J. M. Harris, ed. Plenum
Press, New York, pp. 199-220.
Mori, Y., et al. (1983). Interactions
between hydrogels containing PEO
chains and platelets. Biomaterials 4:
825-830.
Ostuni, E., Chapman, R. G., Holmlin, R. E.,
Takayama, S., and Whitesides, G. M.
(2001). A survey of structure-property
relationships of surfaces that resist the
adsorption of protein. Langmuir 17:
5605-5620.
Pertsin, A. J., and Grunze, M. (2000).
Computer simulation of water near the
surface of oligo(ethylene glycol)-
terminated alkanethiol self-assembled
monolayers. Langmuir 16(23): 8829-
8841.
Pertsin, A. J., Hayashi, T., and Grunze, M.
(2002). Grand canonical monte carlo
simultations of the hydration
interaction between oligo(ethylene
glycol)-terminated alkanethiol
Search WWH ::




Custom Search