Biomedical Engineering Reference
In-Depth Information
injection molding of polymeric
composites with enhanced properties.
SPE Proceedings, 57th Annual Technical
Conference, Atlanta, USA, pp.
487-493.
Rokkanen, P. U., Bostman, O., Hirvensalo,
E., Makela, E. A., Partio, E. K., Patiala,
H., Vainionpaa, S., Vihtonen, K., and
Tormala, P. (2000). Bioabsorbable
fixation in orthopaedic surgery and
traumatology. Biomaterials 21: 2607-
2613.
Rushton, N., and Rae, T. (1984). The intra-
articular response to particulate carbon
fiber reinforced high density
polyethylene and its constituents: an
experimental study in mice.
Biomaterials 5: 352-356.
Shikinami, Y., and Okuno, M. (2001).
Bioresorbable devices made of forged
composites of hydroxyapatite (HA)
particles and poly L -lactide (PLLA).
Part II: practical properties of
miniscrews and miniplates.
Biomaterials 22: 3197-3211.
Shinzato, S., Kobayashi, M., Farid Mousa,
W., Kamimura, M., Neo, M., Kitamura,
Y., Kokubo, T., and Nakamura, T.
(2000). Bioactive polymethyl
methacrylate-based bone cement:
Comparison of glass beads, apatite- and
wollastonite-containing glass-ceramic,
and hydroxyapatite fillers on
mechanical and biological properties.
J. Biomed. Mater. Res. 51(2): 258-272.
St. John, K. R. (1983). Applications of
advanced composites in orthopaedic
implants. in Biocompatible Polymers,
Metals, and Composites, M. Szycher,
ed. Technomic, Lancaster, PA, p. 861.
Tang, R., Boyle, Jr., W. J., Mares, F., and
Chiu, T.-H. (1990). Novel
bioresorbable polymers and medical
devices. Trans. 16th Ann. Mtg. Soc.
Biomater. 13: 191.
Thomson, R. C., Yaszemski, M. J., Powers,
J. M., and Mikos, A. G. (1998).
Hydroxyapatite fiber reinforced poly
( a -hydroxy ester) foams for bone
regeneration. Biomaterials 19:
1935-1943.
Tormala, P. (1992). Biodegradable self-
reinforced composite materials:
manufacturing structure and
mechanical properties. Clin. Mater. 10:
29-34.
Tormala, P., Rokkanen, P., Laiho, J.,
Tamminmaki, M., and Vainionpaa, S.
(1988). Material for osteosynthesis
devices. U.S. Patent No. 4,734,257.
Ural, E., Kesenci, K., Fambri, L., Migliaresi,
C., and Piskin, E. (2000). Poly( D , L -
lactide/ 3 -caprolactone)/hydroxyapatite
composites. Biomaterials 21: 2147-
2154.
Vacanti, C. A., Langer, R, Schloo, B., and
Vacanti, J. P. (1991). Synthetic
polymers seeded with chondrocytes
provide a template for new cartilage
formation. Plast. Reconstr. Surg. 88(5):
753-759.
Vallittu, P.K. (1996). A review of fiber-
reinforced denture base resins. J.
Prosthodont. 5(4): 270-276.
Veerabagu, S., Fujihara, K., Dasari, G. R.,
and Ramakrishna, S. (2003). Strain
distribution analysis of braided
composite bone plates. Composites Sci.
Technol. 61: 427-435.
Vert, M., Christel, P., Garreau, H., Audion,
M., Chanavax, M., and Chabot, F.
(1986). Totally bioresorbable
composites systems for internal fixation
of bone fractures. in Polymers in
Medicine, Vol. 2, C. Migliaresi and L.
Nicolais, eds. Plenum, New York,
pp. 263-275.
Wang, A., Lin, R., Polineni, V. K., Essner, A.,
Stark, C., and Duble-ton, J. H. (1998).
Carbon fiber reinforced polyether ether
ketone composite as a bearing surface
for total hip replacement. Tribology Int.
31: 661-667.
Wening, J. V., Katzer, A., Nicolas, V., Hahn,
M., Jungbluth, K. H., and Kratzer, A.
(1994). Imaging of alloplastic ligament
implant. An in vivo and in vitro study
exemplified by Kevlar. Unfallchirurgie
20(2): 61-65.
Woo, S. L. Y., Akeson, W. H., Levenetz, B.,
Coutts, R. D., Matthews, J. V., and
Amiel, D. (1974). Potential application
of graphite fiber and
methylmethacrylate resin composites as
internal fixation plates. J. Biomed.
Mater. Res. 8: 321-328.
Xu, H. K., Eichmiller, F. C., and
Giuseppetti, A. A. (2000).
Reinforcement of a self-setting calcium
phosphate cement with different fibers.
J. Biomed. Mater. Res. 52(1): 107-114.
Yang, J. M., Huang, P. Y., Yang, M. C., and
Lo, S. K. (1997). Effect of MMA-g-
UHMWPE grafted fiber on mechanical
properties of acrylic bone cement. J.
Biomed. Mater. Res. 38(4): 361-369.
Yasko, A., Fellinger, E., Waller, S., Tomin,
A., Peterson, M., Wang, E., and Lane, J.
(1992). Comparison of biological and
synthetic carriers for recombinant
human BMP induced bone formation.
Trans. Orth. Res. Soc. 17: 71.
Yaszemski, M. J., Paune, R. G., Hayes, W.
C., Langer, R., and Mikos, A. G.
(1996). In vitro degradation of
a poly(propylene fumavate)-based
composite materials. Biomaterials 17:
2127-2130.
Zimmerman, M. C., Alexander, H.,
Parsons, J. R., and Bajpai, P. K. (1991).
The design and analysis of laminated
degradable composite bone plates for
fracture fixation. in Hi-Tech Textiles,
T. Vigo, ed. ACS Publications,
Washington, D.C.
Zimmerman, M. C., Parsons, J. R., and
Alexander, H. (1987). The design and
analysis of a laminated partially
degradable composite bone plate for
fracture fixation. J. Biomed. Mater. Res.
Appl. Biomater. 21A(3): 345.
and ''stealth'' surfaces. It is generally acknowledged that
surfaces that strongly adsorb proteins will generally bind
cells, and that surfaces that resist protein adsorption will
also resist cell adhesion. It is also generally recognized
that hydrophilic surfaces are more likely to resist protein
adsorption, and that hydrophobic surfaces usually will
adsorb a monolayer of tightly adsorbed protein. Excep-
tions to these generalizations exist, but, overall, they are
accurate statements.
An important area for NFSs focuses on bacterial
biofilms. Bacteria are believed to adhere to surfaces via
3.2.13 Nonfouling surfaces
Allan S. Hoffman and Buddy D. Ratner
Introduction
''Nonfouling'' surfaces (NFSs) refer to surfaces that resist
the adsorption of proteins and/or adhesion of cells. They
are also loosely referred to as protein-resistant surfaces
Search WWH ::




Custom Search