Biomedical Engineering Reference
In-Depth Information
Because of the high development costs and the small-
volume market available, few biomedical materials have,
to date, been designed specifically for biomedical use.
Biomedical composites, because of their unique re-
quirements, are probably be the first general class of ma-
terials developed exclusively for implantation purposes.
Bibliography
Adam, F., Hammer, D. S., Pfautsch, S., and
Westermann, K. (2002). Early failure of
a press-fit carbon fiber hip prosthesis
with a smooth surface. J. Arthroplasty
17: 217-223.
Agarwal, B. D., and Broutman, L. J.
(1980). Analysis and Performance of
Fiber Composites. Wiley-Interscience,
New York.
Ahmed, S., and Jones F. R. (1990). A
review of particulate reinforcement
theories for polymer composites.
J. Mater. Sci. 25: 4933-42.
Akay, M., and Aslan, N. (1996). Numerical
and experimental stress analysis of
a polymeric composite hip joint
prosthesis. J. Biomed Mater. Res. 31:
167-82.
Alexander, H., Parsons, J. R., Ricci, J. L.,
Bajpai, P. K., and Weiss, A. B. (1987).
Calcium-based ceramics and
composites in bone reconstruction.
CRC Crit. Rev. Biocompat. 4(1):
43-77.
Ali, M. S., Hastings, G. W., Rushton, N.,
Ross, E. R. S., and Wynn-Jones, C. H.
(1990). Carbon fiber composite plates.
J. Bone Joint Surg. 72-B: 586-591.
Ambrosio, L., Netti, P., Iannace, S., Huang,
S. J., and Nicolais, L. (1996).
Composite hydrogels for intervertebral
disc prostheses. J. Mater. Sci. Mater.
Med. 7: 251-4.
Baidya, K. P., Ramakrishna, S., Rahman, M.,
and Ritchie A. (2001). Advanced textile
composite ring for Ilizarov external
fixator system. Proc. Inst. Mech. Eng.
Part H, J. Eng. Med. 215: 11-23.
Barbero, E. J. (1998). Introduction to
Composite Materials Design. Taylor and
Francis, Philadelphia.
Barrows, T. H. (1986). Degradable implant
materials: a review of synthetic
absorbable polymers and their
applications. Clin. Mater. 1: 233.
Bochlogyros, P. M., Hensher, R., Becker, R.,
and Zimmerman, E. (1985). A modified
hydroxyapatite implant material.
J. Maxillofac. Surg. 13(5): 213.
Bonfield, W. (1988). Composites for bone
replacement. J. Biomed. Eng. 10: 522.
Bonfield, W., Wang, M., and Tanner K. E.
(1998). Interfaces in analogue
biomaterials. Acta Mater. 7: 2509-
2518.
Brown, D. (2000). Fibre-reinforced
materials. Dent. Update 27(9):
442-448.
Cheal, E. J., Spector, M., and Hayes, W. C.
(1992). Role of loads and prosthesis
material properties on the mechanics of
the proximal femur after total hip
arthroplasty. J. Orthop. Res. 10:
405-422.
Chen, S. Y., Liang, W. M., and Yen, P. S.
(2001). Reinforcement of acrylic
denture base resin by incorporation of
various fibers. J. Biomed. Mater. Res.
58(2): 203-208.
Christel, P., Leray, J., Sedel, L., and
Morel, E. (1980). Mechanical
evaluation and tissue compatibility of
materials for composite bone plates. in
Mechanical Properties of Biomaterials,
G. Hasting and D. F. Williams, eds.
Wiley, New York, pp. 367-377.
Ciappetta, P., Boriani, S., and Fava, G. P.
(1997). A carbon fiber reinforced
polymer cage for vertebral body
replacement: technical note.
Neurosurgery 4(5): 1203-1206.
Claes, L., Hutter, W., and Weiss, R. (1997).
Mechanical properties of carbon
reinforced polysulfone plates for
internal fixation, in Biological and
Biomechanical Performance of
Biomaterials, P. Christel, A. Meunier,
and A. J. C. Lee, eds. Elsevier,
Amsterdam, pp. 81-86.
Claes, L., Schultheiss, M., Wolf, S., Wilke,
H. J., Arand, M., and Kinzl, L. (1999).
A new radiolucent system for vertebral
body replacement: its stability in
comparison to other systems. J. Biomed.
Mater. Res. Appl. Biomater. 48(1):
82-89.
Corcoran, S., Koroluk, J., Parsons, J. R.,
Alexander, H., and Weiss, A. B. (1981).
The development of a variable stiffness,
absorbable composite bone plate. in
Current Concepts for Internal Fixation
of Fractures, H. K. Uhthoff, ed.
Springer-Verlag, New York, pp. 136.
Daniels, A. U., Melissa, K. O., and
Andriano, K. P. (1990). Mechanical
properties of biodegradable polymers
and composites proposed for internal
fixation of bone. J. Appl. Biomater. 1(1):
57-78.
Dawson, D. K. (2000). Medical devices. in
Comprehensive Composite Materials,
Vol. 6, A. Kelly, ed. Elsevier, pp. 1-32.
deOliveiraSimoes,J.A.,andMarques,A.T.
(2001). Determination of stiffness
properties of braided composites for
the design of hip prostheses.
Composites, Part A 32: 655-662.
De Santis, R., Ambrosio, L., and
Nicolais, L. (2000). Polymer-based
composite hip prosthesis. J. Inorg.
Biochem. 79: 97-102.
Dunn, M. G. (1998). Anterior cruciate
ligament prostheses. in Encyclopedia of
Sports Medicine and Science ,
T. D. Fahey, ed. Internal Society for
Sports Science, http://sportsci.org .
Durselen, L., Dauner, M., Hierlemann, H.,
Planck, H., Claes, L. E., and Ignatius, A.
(2001) Resorbable polymer fibers for
ligament augmentation. J. Biomed.
Mater. Res. 58(6): 666-672.
Einstein, A. (1956). in Investigation of
Theory of Brownian Motion. Dover,
New York.
Frazza, E. J., and Schmitt, E. E. (1971).
A new absorbable suture. J. Biomed.
Mater. Res. 10: 43.
Furukawa, T., Matsusue, Y., Yasunaga, T.,
Nakagawa, Y., Shikinami, Y., Okuno, M.,
and Nakamura, T. (2000a). Bone
bonding ability of a new biodegradable
composite for internal fixation of bone
fractures. Clin. Orthop. 379: 247-258.
Furukawa, T., Matsusue, Y., Yasunaga, T.,
Shikinami, Y., Okuno, M., and
Nakamura, T. (2000b). Biodegradation
behavior of ultra-high-strength
hydroxyapatite/poly( L -lactide)
composite rods for internal fixation of
bone fractures. Biomaterials 21: 889-
898.
Gershon, B., Cohn, D., and Marom, G.
(1992). Compliance and ultimate
strength of composite arterial
prostheses. Biomaterials 13: 38-43.
Gershon, B., Cohn, D., and Marom, G.
(1990). The utilization of composite
laminate theory in the design of
synthetic soft tissue for biomedical
prostheses. Biomaterials 11: 548-552.
Gilding, D. K., and Reed, A. M. (1979).
Biodegradable polymers for use in
surgery: PGA/PLA homo- and
copolymers. 1. Polymer 20: 1459.
Search WWH ::




Custom Search