Biomedical Engineering Reference
In-Depth Information
carbon: I. Protein conformational change
probed by differential scanning
calorimetry. J. Biomed. Mater. Res. 28:
735-743.
Gilpin, C. B., Haubold, A. D., and Ely, J. L.
(1993). Fatigue crack growth and
fracture of pyrolytic carbon composites.
in Bioceramics, Vol. 6, P. Ducheyne and
D. Christiansen, ed. Butterworth-
Heinemann, Oxford, pp. 217-223.
Goodman, S. L., Tweden, K. S., and
Albrecht, R. M. (1995). Three-
dimensional morphology and platelet
adhesion on pyrolytic carbon heart valve
materials. Cells Mater. 5(1): 15-30.
Griffin, C. D., Buchanan, R. A., and
Lemons, J. E. (1983). In vitro
electrochemical corrosion study of
coupled surgical implant materials.
J. Biomed. Mater. Res. 17: 489-500.
Hanson, S. R. (1998). Blood-material
interactions. in Handbook of Biomaterial
Properties, J. Black and G. Hastings, eds.
Chapman and Hall, London, pp. 545-
555.
Haubold, A. D. (1994). On the durability
of pyrolytic carbon in vivo. Medi. Prog.
Technol. 20: 201-208.
Haubold, A. D., and Ely, J. L. (1995).
Carbons used in mechanical heart
valves. Transactions Society for
Biomaterials, 21st Annual Meeting, San
Francisco, p. 275.
Haubold, A. D., Shim, H. S., and Bokros,
J. C. (1981). Carbon in medical devices.
in Biocompatibility of Clinical Implant
Materials. David, P. Williams, ed. CRC
Press, Boca Raton, Florida, pp. 3-42.
Kaae, J. L., and Wall, D. R. (1996).
Microstructural characterization of
pyrolytic carbon for heart valves. Cells
Mater. 4: 281-290.
Kafesjian, R., Howanec, M., Ward, G. D.,
Diep, L., Wagstaff, L., and Rhee, R.
(1994). Cavitation damage of pyrolytic
carbon in mechanical heart valves.
J. Heart Valve Dis. 3(Suppl. I): S2-S7.
Kelpetko, V., Moritz, A., Mlczoch, J.,
Schurawitzki, H., Domanig, E., and
Wolner, E. (1989). Leaflet fracture in
Edwards-Duromedics bileaflet valves.
J. Thorac. Cardiovasc. Surg. 97: 90-94.
King, R. N., Andrade, J. D., Haubold, A. D.,
and Shim, H. S. (1981). Surface analysis
of silicon: alloyed and unalloyed LTI
pyrolytic carbon, in Photon, Electron and
Ion Probes of Polymer Structure and
Properties, ACS Symposium Series 162,
D. W. Dwight, T. J. Fabish, and H. R.
Thomas,eds.AmericanChemical
Society, Washington, D.C., pp. 383-404.
LaGrange, L. D., Gott, V. L., Bokros, J. C.,
and Ramos, M. D. (1969).
Compatibility of carbon and blood. in
Artificial Heart Program Conference
Proceedings, R. J. Hegyeli, ed. U.S.
Government Printing Office,
Washington, D.C., pp. 47-58.
Lee, R. G., and Kim, S. W. (1974).
Adsorption of proteins onto
hydrophobic polymer surfaces:
adsorption isotherms and kinetics.
J. Biomed Mater. Res. 8: 251.
Ma, L., and Sines, G. (1996). Fatigue of
isotropic pyrolytic carbon used in
mechanical heart valves. J. Heart Valve
Dis. 5(Suppl. I): S59-S64.
Ma, L., and Sines, G. (1999). Unalloyed
pyrolytic carbon for implanted heart
valves. J. Heart Valve Dis. 8(5): 578-
585.
Ma, L., and Sines, G. (2000). Fatigue
behavior of pyrolytic carbon. J. Biomed.
Mater. Res. 51: 61-68.
More, R. B., and Haubold, A. D. (1996).
Surface chemistry and surface roughness
of clinical pyrocarbons. Cells Mater. 6:
273-279.
More, R. B., and Silver, M. D. (1990).
Pyrolytic carbon prosthetic heart valve
occluder wear: in vivo vs. in vitro results
for the Bj¨rk-Shiley prosthesis. J. Appl.
Biomater. 1: 267-278.
More, R. B., Kepner, J. L., and Strzepa,
P. (1993). Hertzian fracture in pyrolite
carbon. in Bioceramics, Vol. 6,
P. Ducheyne and D. Christiansen,
eds. Butterworth-Heinemann, Oxford,
pp. 225-228.
Nyilas, E., and Chiu, T. H. (1978). Artificial
surface/sorbed protein structure/
hemocompatibility correlations. Artif.
Organs 2(Suppl): 56-62.
Okazaki, Y., Wika, K. E., Matsuyoshi,
T., Fukamachi, K., Kunitomo, R.,
Tweeden, K. S., and Harasaki, H.
(1997). Platelets were early
postoperative depositions on the leaflet
of a mechanical heart valve in sheep
without postoperative anticoagulants or
antiplatelet agents. ASAIO J. 42: M750-
M754.
Pauling, L. (1964). College Chemistry, 3rd
ed. W. H. Freeman and Company, San
Francisco.
Reilly, D. T., and Burstein, A. H. (1974).
The mechanical properties of bone. J.
Bone Joint Surg. Am. 56: 1001.
Reilly, D. T., Burstein, A. H., and Frankel,
V. H. (1974). The elastic modulus for
bone. J. Biomech. 7: 271.
Richard, G., and Cao, H. (1996). Structural
failure of pyrolytic carbon heart valves.
J. Heart Valve Dis. 5(Suppl. I): S79-
S85.
Ritchie, R. O., Dauskardt, R. H., Yu, W.,
and Brendzel, A. M. (1990). Cyclic
fatigue-crack propagation, stress
corrosion and fracture toughness
behavior in pyrolite carbon coated
graphite for prosthetic heart valve
applications. J. Biomed. Mat. Res. 24:
189-206.
Sadeghi, H. (1987). Dysfonctions des
prostheses valvulaires cardaques et leur
traitment chirgical. Schwiez. Med.
Wochenschr. 117: 1665-1670.
Salzman, E. W., Lindon, J., Baier, D., and
Merril, E. W. (1977). Surface-induced
platelet adhesion, aggregation and
release. Ann. N.Y. Acad. Sci. 283: 114.
Sattler, K. (1995). Scanning tunneling
microscopy of carbon nanotubes and
nanocones. Carbon 7: 915-920.
Sawyer, P. N., Lucas, L., Stanczewski, B.,
Ramasamy, N., Kammlott, G. W., and
Goodenough, S. H. (1975). Evaluation
techniques for potential cardiovascular
prosthetic alloys experience with
titanium aluminum 6-4 ELI tubes.
Proceedings of the San Diego Biomedical
Symposium, Vol. 14, pp. 423-427.
Schoen, F. J. (1983). Carbons in heart valve
prostheses: foundations and clinical
performance. in Biocompatible Polymers,
Metals and Composites, M. Zycher, ed.
Technomic, Lancaster, PA, pp. 240-261.
Schoen, F. J., Titus, J. L., and Lawrie, G. M.
(1982). Durability of pyrolytic carbon-
containing heart valve prostheses. J.
Biomed. Mater. Res. 16: 559-570.
Smith, K. L., and Black, K. M. (1984).
Characterization of the treated surfaces
of silicon alloyed pyrolytic carbon and
SiC. J. Vac. Sci. Technol. A2: 744-747.
Thompson, N. G., Buchanan, R. A., and
Lemons, J. E. (1979). In vitro corrosion
of Ti-6Al-4V and Type 316L stainless
steel when galvanically coupled with
carbon. J. Biomed. Mater. Res. 13:
35-44.
Wieting, D. W. (1996). The Bj¨rk-Shiley
Delrin tilting disc heart valve: historical
perspective, design and need for
scientific analyses after 25 years. J.
Heart Valve Dis. 5(Suppl. I): S157-
S168.
Williams, D. F. (1998). General concepts of
biocompatibility. in Handbook of
Biomaterial Properties, J. Black, and
G. Hastings, eds. Chapman and Hall,
London, pp. 481-489.
Search WWH ::




Custom Search