Biomedical Engineering Reference
In-Depth Information
and test parameters, which need to be carefully con-
trolled in order to allow adequate interpretation of data.
HA has been used clinically in a range of different
forms and applications. It has been utilised as a dense,
sintered ceramic for middle ear implant applications
(van Blitterswijk et al. , 1990) and alveolar ridge re-
construction and augmentation (Quin and Kent, 1984;
Cranin et al. , 1987), in porous form (Smiler and Holmes,
1987; Bucholz et al. , 1987), as granules for filling bony
defects in dental and orthopaedic surgery (Aoki, 1994;
Fujishiro et al. , 1997; Oonishi et al. , 1990; Froum et al.,
1986; Galgut et al ., 1990; Wilson and Low, 1992), and as
a coating on metal implants (Cook et al. , 1992a, b; De
Groot, 1987).
Another successful clinical application for HA has
been in the form of a filler in a polymer matrix. The
original concept of a bioceramic polymer composite was
introduced by Bonfield and co-workers and the idea was
based on the concept that cortical bone itself comprises
an organic matrix reinforced with a mineral component.
The material developed by Bonfield and co-workers
contains up to 50 vol % HA in a PE matrix, has a stiffness
similar to that of cortical bone, has high toughness, and
has been found to exhibit bone bonding in vivo. The
material has been used as an orbit implant for orbital floor
fractures and volume augmentation (Tanner et al. , 1994)
and is now used in middle ear implants, commercialized
under the trade name HAPEX (Bonfield, 1996).
Bibliography
Collin, R. L. (1959). StrontiumdCalcium
hydroxyapatite solid solutions:
Preparations and lattice constant
measurements. J . Am. Chem. Soc. 81:
5275.
Cook, S. D., Thomas, K. A., Kay, J. F., and
Jarcho, M. (1998). Hydroxylapatite
coated titanium for orthopaedic implant
applications. Clin. Orthop. Rel. Res.
232: 225-243.
Cook, S. D., Thomas, K. A., Dalton, J. E.,
Volkman, R. K., White-cloud, T. S., and
Kay, J. E. (1999). Hydroxylapatite
coating of porous implants improves
bone ingrowth and interface attachment
strength. J . Biomed. Mater. Res. 26:
989-1001.
Cranin, A. N., Tobin, G. P., and Gelbman, J.
(1987). Applications of hydroxyapatite
in oral and maxilofacial surgery, part II:
Ridge augmentation and repair of major
oral defects. Compend. Contin. Educ.
Dent. 8: 334-345.
DeGroot, K. (1984). Surface chemistry of
sintered hydroxyapatite: On possible
relations with biodegredation and slow
crack propagation, in Adsorption and
Surface Chemistry of Hydroxyapatite.
Ed. Misra, D. N. Plenum Publishing,
New York.
DeGroot, K. (1987). Hydroxylapatite
coatings for implants in surgery. in High
Tech Ceramics. Ed. Vincenzini, P.
Elsevier, Amsterdam.
DeGroot, K., Geesink, R. G. T., Klein, C. P.
A. T., and Serekian, P. (1987). Plasma
sprayed coatings of hydroxylapatite. J.
Biomed. Mater. Res. 21: 1375-1381.
DeGroot, K., Wolke, J. G. C., and Jansen,
J. A. (1998). Calcium phosphate
Akao, M., Aoki, H., and Kato, K. (1981).
Mechanical Properties of Sintered
Hydroxyapatite for Prosthetic
Applications. J . Mat. Sci. 16: 809.
Aoki, H. (1994). Medical Applications of
Hydroxyapatite. Ishiyaku EuroAmerica
Inc. Tokyo.
Levin, E. M., Robbins, C. R., and
McMurdie, H. F. (eds.) (1964).
American Ceramic Society, Phase
Diagrams for Ceramists. American
Ceramics Society, Ohio, p. 107.
Arends, J., Schutof, J., van der Linden, W. H.,
Bennema, P., and van den Berg, P. J.
(1979). Preparation of Pure
Hydroxyapatite Single Crystals by
Hydrothermal Recrystallisation. J. Cryst
Growth 46: 213.
Barralet, J. E., Best, S. M., and Bonfield, W.
(1998). Carbonate substitution in
precipitated hydroxyapatite: An
investigation into the effects of reaction
temperature and bicarbonate Ion
concentration. J. Biomed. Mater. Res.
41: 79-86.
Berndt, C. C., Haddad, G. N., and Gross, K. A.
(1989). Thermal spraying for bioceramics
application. in Bioceramics 2. Proceedings
of the 2nd International Symposium on
Ceramics in Medicine, Heidelberg, pp.
201-206.
Best, S. M., and Bonfield, W. (1994).
Processing behaviour of hydroxyapatite
powders of contrasting morphology. J .
Mater. Sci. Mat. Med. 5: 516.
Bocholz, R. W., Carlton, A., and Holme, R.
E. (1987). Hydroxyapatite and
tricalcium phosphate bone graft
substitute. Orthop. Clin. North Am. 18:
323-334.
Bonel, G., Heughebeart, J-C.,
Heughebaert, M., Lacout, J. L., and
Lebugle, A. (1987). Apatitic calcium
orthophosphates and related
compounds for biomaterials
preparation. Annals of the New York
Academy of Science 115.
Bonfield, W., Grynpas, M. D., Tully, A. E.,
Bowman, J., and Abram, J. (1989).
Hydroxyapatite reinforced
polyethylene
A mechanically
compatible implant. Biomaterials 2:
185-186.
Bonfield, W. (1996). Composite
biomaterials. in Bioceramics 9,
T. Kukubo, T. Nakamura, and F. Miyaji,
eds. Proceedings of the 9th International
Symposium on Ceramics in Medicine,
Pergamon.
Christel, P., Meunier, A., Dorlot, J. M.,
Crolet, J. M., Witvolet, J., Sedel, L., and
Boritin, P. (1988). Biomechanical
compatability and design of ceramic
implants for orthopedic surgery. in
Bioceramics: Material Characteristics
versus In-Vivo Behavior, P. Ducheyne
and J. Lemons, eds. Ann. N. Y. Acad.
Sci. 523: 234.
Clemens, J. A. M. (1995). Fluorapatite
Coatings for the Osseointegration of
Orthopaedic Implants, Thesis,
University of Leiden, Leiden, The
Netherlands.
Clemens J. A. M., Klein C. P. A. T., Vriesde
R. C., de Groot K., and Rozing P. M.
(1995). Large gaps around calcium
phosphate coated bone implants:
Deficient bone apposition despite use of
allograft bone. in Proceedings of 21st
Annual Meeting. Society for
Biomaterials, San Francisco.
d
Search WWH ::




Custom Search