Biomedical Engineering Reference
In-Depth Information
If we calculate the total admittance until m
=
1, we have
1 /Zl 1 (s)
Y 2 (s) =
(5.13)
Zt 1 (s)/Zl 1 (s)
1
+
Zt 1 (s)/Zl 2 (s)
1 +
1
+
U 2 (s)
I 1 (s)Zl 2 (s)
or, equivalently,
1 /Zl 1 (s)
Y 2 (s)
=
(5.14)
Zt 1 (s)/Zl 1 (s)
1
+
Zt 1 (s)/Zl 2 (s)
1
+
Zt 2 (s)/Zl 2 (s)
1
1
+
Zt 2 (s) I 2 (s)
U 2 (s)
+
From ( 5.12 )-( 5.14 ) one may generalize via recurrence the form of the total admit-
tance with m
=
N cells, for N
→∞
:
1 /Zl 1 (s)
Y N (s)
=
(5.15)
Zt 1 (s)/Zl 1 (s)
1
+
Zt 1 (s)/Zl 2 (s)
1
+
Zt 2 (s)/Zl 2 (s)
1
+
...
...
Zt N 1 (s)/Zl N (s)
1
1
+
+ Zt N (s)/Zl N (s)
which is, in fact, a continued fraction expansion [ 118 ]. Re-writing ( 5.15 )usingthe
explicit form of the longitudinal and transversal impedances gives
1 /(R e 1 + L e 1 s)
Y N (s) =
(5.16)
1 /
[
C e 1 s(R e 1 +
L e 1 s)
]
1
+
1 /
[
C e 1 s(R e 2 +
L e 2 s)
]
1
+
1 /
[
C e 2 s(R e 2 +
L e 2 s)
]
1
+
1 /
[
C e 2 s(R e 3 +
L e 3 s)
]
1
+
...
...
1 / [ C e(N 1 ) s(R eN + L eN s) ]
1
1
+
+
1 / [ C eN s(R eN + L eN s) ]
which, in terms of the recursive ratios from ( 5.4 ) can be re-written as
1 /(R e 1 +
L e 1 s)
Y N (s)
=
(5.17)
1 /
[
C e 1 s(R e 1 +
L e 1 s)
]
1
+
L e 1 s
α
1 / [ C e 1 s(λR e 1 +
) ]
1
+
L e 1 s
α
1 /
[
χC e 1 s(λR e 1 +
)
]
1
+
L e 1 s
α 2 ) ]
1 / [ χC e 1 s(λ 2 R e 1 +
1
+
...
...
L e 1 s
α N 1 )
χ N 2 C e 1 s(λ N 1 R e 1 +
1 /
[
]
1 +
L e 1 s
α N 1 ) ]
1
+
1 / [ χ N 1 C e 1 s(λ N 1 R e 1 +
For the set of conditions:
1
R e 1 ·
R e 1
L e 1
L e 1
R e 1
|
s
|
<
and
|
s
|
(5.18)
C e 1
and
α · χ> 1 · λ> 1 ,λ> 1 and χ> 1 ,
(5.19)
Search WWH ::




Custom Search