Biomedical Engineering Reference
In-Depth Information
Similarly, we define
2 J 1 (δj 3 / 2 )
(J 0 (δj 3 / 2 )δj 3 / 2 )
M 1 e 1
=
1
(4.21)
2 J 1 (δj 3 / 2 y)
(J 0 (δj 3 / 2 )δj 3 / 2 )
M 2 (y)e 2 (y)
=
1
denoting the modulus and phase of the Bessel functions of first kind J i and i th
order [ 1 ].
For an elastic pipeline ,the no-slip condition is still valid ( w
=
0for y
1),
such that the radial velocity is
y
A P e jω(t
2 J 1 (δj 3 / 2 y)
J 0 (δj 3 / 2 y)δj 3 / 2
jωR
2 ρ
z
c )
u(y) =
c
˜
y
M P e j(ωt Φ P )
2 J 1 (δj 3 / 2 y)
J 0 (δj 3 / 2 )δj 3 / 2
Ry
2 ρ
=
(4.22)
c
˜
and using ( 4.21 ), the equivalent form of ( 4.22 ) becomes
R
2 ρ
c M P M 2 (y)e j(ωt Φ P + ε 2 (y))
u(y)
=
(4.23)
˜
The flow is given by
πR 2 M P
ωρ
πR 4 M P
μδ 2
M 1 e j(ωt Φ P π/ 2 + ε 1 )
M 1 e j(ωt Φ P π/ 2 + ε 1 )
Q
=
=
(4.24)
The effective pressure wave has the general form of
z
c )
A P e j(ω(t
φ P ) ,
p(z,t)
=
(4.25)
where φ P can be a phase shift for z
=
0at t
=
0. It follows that
dp
dz =
A P ω
˜
z
˜
M P e j(ωt Φ P )
e j(ω(t
c )
φ P +
π/ 2 )
=
(4.26)
c
For z
=
0, it follows that
A P ω
c 0 M 1
M P e j(ωt Φ P )
e j(ωt φ P + π/ 2 ε 1 / 2 )
=
(4.27)
from which we have
A P ω
M P =
c 0 M 1
(4.28)
´
and
Φ P = φ P π/ 2
+ ε 1 / 2
(4.29)
Search WWH ::




Custom Search