Biomedical Engineering Reference
In-Depth Information
113. MacFarlane M. Cell death pathways: potential
therapeutic targets. Xenobiotica
2009;39(8):616-624.
114. Cai SX, Drewe J, Kemnitzer W. Discovery of 4-aryl-4H-chromenes as potent apoptosis
inducers using a cell- and caspase-based Anti-cancer Screening Apoptosis Program
(ASAP): SAR studies and the identification of novel vascular disrupting agents.
Anticancer Agents Med. Chem. 2009;9(4):437-456.
115. Sauermann M, Hahne F, Schmidt C, Majety M, Rosenfelder H, Bechtel S, Huber W,
Poustka A, Arlt D, Wiemann S. High-throughput flow cytometry-based assay to identify
apoptosis-inducing proteins. J. Biomol. Screen. 2007;12(4):510-520.
116. Gasparri F, Cappella P, Galvani A. Multiparametric cell cycle analysis by automated
microscopy. J. Biomol. Screen. 2006;11(6):586-598.
117. Smith PJ, Blunt N, Wiltshire M, Hoy T, Teesdale-Spittle P, CravenMR, Watson JV, Amos
WB, Errington RJ, Patterson LH. Characteristics of a novel deep red/infrared fluorescent
cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry,
confocal and multiphoton microscopy. Cytometry 2000;40(4):280-291.
118. Edward R. Use of DNA-specific anthraquinone dyes to directly reveal cytoplasmic and
nuclear boundaries in live and fixed cells. Mol. Cells 2009;27(4):391-396.
119. Smith PJ,Marquez N,WiltshireM, Chappell S, NjohK, Campbell L, Khan IA, Silvestre O,
Errington RJ. Mitotic bypass via an occult cell cycle phase following DNA topoisomerase
II inhibition in p53 functional human tumor cells. Cell Cycle 2007;6(16):2071-2081.
120. Smith PJ, Chin SF, Njoh K, Khan IA, Chappell MJ, Errington RJ. Cell cycle checkpoint-
guarded routes to catenation-induced chromosomal instability. SEB Exp. Biol. Ser.
2008;59:219-242.
121. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B,
Goldgraben MA, Caldwell ME, Allard D, et al. Inhibition of Hedgehog signaling
enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science
2009;324(5933):1457-1461.
122. Boyle RG, Travers S. Hypoxia: targeting the tumour. Anticancer Agents Med. Chem.
2006;6(4):281-286.
123. Tredan O, Grantab R, Dumontet C. Can tumor hypoxia be turned into a chemotherapeutic
advantage? Bull. Cancer 2008;95(5):528-534.
124. Tredan O, Garbens AB, Lalani AS, Tannock IF. The hypoxia-activated ProDrug AQ4N
penetrates deeply in tumor tissues and complements the limited distribution of
mitoxantrone. Cancer Res. 2009;69(3):940-947.
125. Patterson LH. Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique
approach to hypoxia-activated cancer chemotherapy. Drug Metab. Rev. 2002;34
(3):581-592.
126. Albertella MR, Loadman PM, Jones PH, Phillips RM, Rampling R, Burnet N, Alcock C,
Anthoney A, Vjaters E, Dunk CR, et al. Hypoxia-selective targeting by the bioreductive
prodrug AQ4N in patients with solid tumors: results of a phase I study. Clin. Cancer Res.
2008;14(4):1096-1104.
127. O Rourke M, Ward C, Worthington J, McKenna J, Valentine A, Robson T, Hirst DG,
McKeownSr., Evaluation of the antiangiogenic potential of AQ4N. Clin. Cancer Res.
2008;14(5):1502-1509.
128. Smith PJ, Desnoyers R, Blunt N, Giles Y, Patterson LH, Watson JV. Flow cytometric
analysis and confocal
imaging of anticancer alkylaminoanthraquinones and their
Search WWH ::




Custom Search