Cryptography Reference
In-Depth Information
where Δ 2 is the determinant of the system with two equations.
Δ 2 = S 2 + S 1 S 3
Finally, for an RS code correcting three errors ( t =3 ), the relation (4.36) with
t =3 and q =1 , 2 , 3 leads to the following system of three equations:
σ 1 S 3 + σ 2 S 2 + σ 3 S 1 = S 4
σ 1 S 4 + σ 2 S 3 + σ 3 S 2 = S 5
σ 1 S 5 + σ 2 S 4 + σ 3 S 3 = S 6
The resolution of this system enables us to determine coecients σ 1 , σ 2 and σ 3
of the error locator polynomial.
σ 1 = Δ 3 S 1 S 3 S 6 + S 1 S 4 S 5 + S 2 S 6 + S 2 S 3 S 5 + S 2 S 4 + S 3 S 4
σ 2 = Δ 3 S 1 S 4 S 6 + S 1 S 5 + S 2 S 3 S 6 + S 2 S 4 S 5 + S 3 S 5 + S 3 S 4
σ 3 =
(4.39)
S 2 S 4 S 6 + S 2 S 5 + S 3 S 6 + S 4
1
Δ 3
where Δ 3 is the determinant of the system with three equations.
Δ 3 = S 1 S 3 S 5 + S 1 S 4 + S 2 S 5 + S 3
Implementation of Peterson's decoder for an RS code with parameter t =3
1. Calculate the 2 t syndromes S j : S j = r ( α j )
2. Determine the number of errors:
Case (a) S j =0 ,
j : no detectable error.
Case (b) Δ 3
=0 : presence of three errors.
Case (c) Δ 3 =0 and Δ 2
=0 : presence of two errors.
Case (d) Δ 3 2 =0 and S 1
=0 : presence of one error.
3. Calculate the error locator polynomial σ d ( x )
Case (b) Use (4.39)
Case (c) Use (4.38)
Case (d) Use (4.37)
4. Look for the roots of σ d ( x ) in field F q
5. Calculate the error coecients e i
Search WWH ::




Custom Search