Hardware Reference
In-Depth Information
34. F. Su, S. Ozev and K. Chakrabarty, “Ensuring the operational health of droplet-based
microelectrofluidic biosensor systems”, IEEE Sensors , vol. 5, pp. 763-773, August 2005.
35. K. Hu, B.-N. Hsu, A. Madison, K. Chakrabarty and R. Fair, “Fault detection, real-time error
recovery, and experimental demonstration for digital microfluidic biochips”, Proc. IEEE/ACM
Design, Automation and Test in Europe (DATE) Conference , pp. 559-564, 2013.
36. D. Tommasini, “Dielectric insulation and high-voltage issues”, arXiv:1104.0802v1, 2011.
37. K. Bohringer, “Modeling and controlling parallel tasks in droplet-based microfluidic systems”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems ,vol.2,
pp. 329-339, 2006.
38. P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement of digital microfluidic biochips using the
T-tree formulation”, Proc. IEEE/ACM Design Automation Conference , pp. 931-934, 2006.
39. M. Cho and D. Z. Pan, “A high-performance droplet router for digital microfluidic biochips”,
Proc. ACM International Symposium on Physical Design , pp. 1714-1724, 2008.
40. T.-W. Huang, C.-H. Lin, and T.-Y. Ho, “A contamination aware droplet routing algorithm for
the synthesis of digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems , vol. 29, no. 11, pp. 1682-1695, 2010.
41. K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfigura-
tion Techniques , Boca Raton, FL: CRC Press, 2006.
42. T. Xu and K. Chakrabarty, “Integrated droplet routing in the synthesis of microfluidic
biochips”, Proc. IEEE/ACM Design Automation Conference , pp. 948-953, 2007.
43. T. Xu and K. Chakrabarty, “Broadcast electrode-addressing for pin-constrained multi-
functional digital microfluidic biochips”, Proc. IEEE/ACM Design Automation Conference ,
pp. 173-178, 2008.
44. Y. Zhao and K. Chakrabarty, “Simultaneous optimization of droplet routing and control-pin
mapping to electrodes in digital microfluidic biochips”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems , vol. 31, pp. 242-254, February 2012.
45. D. Grissom and P. Brisk, “Fast online synthesis of generally programmable digital microfluidic
biochips”, Proc. CODES+ISSS , pp. 413-422, 2012.
46. F. Su, S. Ozev, K. Chakrabarty, “Test planning and test resource optimization for droplet-based
microfluidic systems”, Journal of Electronic Testing: Theory and Applications , Volume 22
Issue 2, pp. 199-210, April 2006.
47. D. Mitra, S. Ghoshal, H. Rahaman, K. Chakrabarty, and B. Bhattacharya, “On-line error
detection in digital microfluidic biochips”, Proc. IEEE Asian Test Symposium , pp. 332-337,
2012.
48. Y. Zhao, T. Xu, and K. Chakrabarty, “Integrated control-path design and error recovery in
digital microfluidic lab-on-chip”, ACM JETC , Vol. 6, No. 3, Article 11, 2010.
49. V. Srinivasan, V. Pamula, and R. Fair, “An integrated digital microfluidic lab-on-a-chip for
clinical diagnostics on human physiological fluids”, LabonaChip , vol. 4, pp. 310-315, 2004.
50. Z. Xiao and E. Young, “CrossRouter: A droplet router for cross-referencing digital microfluidic
biochips”, IEEE/ACM Asia South Pacific Design Automation Conference , pp. 269-274, 2010.
51. C.-Y. Lin and Y.-W. Chang, “Cross-contamination aware design methodology for pin-
constrained digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems , vol. 30, Issue 6, pp. 817-828, 2011.
52. S.-K. Fan, C. Hashi, C.-J. Kim, “Manipulation of multiple droplets on N
M grid by
cross-reference EWOD driving scheme and pressure-contact packaging”, IEEE International
Conference on Micro Electro Mechanical Systems , pp. 694-697, 2003.
53. H.C. Yeung and F.Y. Young, “General purpose cross-referencing Microfluidic Biochip with
reduced pin-count”, Asia and South Pacific Design Automation Conference , pp. 238-243, 2014.
54. T. A. Dinh, S. Yamashita, and T.-Y. Ho, “A logic integrated optimal pin-count design for digital
microfluidic biochips”, Proceedings of the conference on Design, Automation & Test in Europe ,
pp. 1-6, 2014.
55. T.-W. Huang, J.-W. Chang, and T.-Y. Ho, “Integrated fluidic-chip co-design methodology
for digital microfluidic biochips”, Proceedings of ACM International Symposium on Physical
Design , pp. 49-56, 2012.
Search WWH ::




Custom Search