Hardware Reference
In-Depth Information
References
1. Y. Luo, B. Bhattacharya, T.-Y. Ho and K. Chakrabarty, “Optimization of polymerase chain
reaction on a cyberphysical digital microfluidic biochip”, Proc. IEEE/ACM International
Conference on Computer-Aided Design , pp. 622-629, 2013.
2. J. Lage, J. Leamon, T. Pejovic, S. Hamann, M. Lacey, D. Dillon, et. al, “Whole genome
analysis of genetic alterations in small DNA samples using hyperbranched strand displacement
amplification and array-GH”, Genome Res . Issue 13, pp. 294-307, 2003.
3. J. Berthier, Micro-Drops and Digital Microfluidics , Norwich, NY: William Andrew, 2008.
4. I. Erill, S. Campoy, J. Rus, L. Fonseca, A. Ivorra, Z. Navarro, J. Plaza, J. Aguilo, and J. Barbe,
“Development of a CMOS-compatible PCR chip: comparison of design and system strategies”,
Journal of Micromechanics and Microengineering , Volume 14, Number 11, pp. 1-11, 2014.
5. C. Zhang and D. Xing, “Miniaturized PCR chips for nucleic acid amplification and analysis:
latest advances and future trends”, Nucleic Acids Research , Vol. 35, No. 13, pp. 4223-4237,
2007.
6. D. Brassard, L. Malic, C. Miville-Godin, F. Normandin, and T. Veres, “Advanced EWOD-
based digital microfluidic system for multiplexed analysis of biomolecular interactions”, IEEE
International Conference on Micro Electro Mechanical Systems (MEMS) , pp. 153-156, 2011.
7. D. Jary, A. Chollat-Namy, Y. Fouillet, J. Boutet, C. Chabrol, G. Castellan, D. Gasparutto, and
C. Peponnet, “DNA repair enzyme analysis on EWOD fluidic microprocessor”, Proceedings
of the NSTI-Nanotech Conference , vol. 2, pp. 554-557, 2006.
8. K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfigura-
tion Techniques , Boca Raton, FL : CRC Press, 2006.
9. Y. Luo, K. Chakrabarty, and T.-Y. Ho, “Dictionary-based error recovery in cyberphysical
digital-microfluidic biochips”, Proc. IEEE/ACM International Conference on Computer-Aided
Design , pp. 369-376, 2012.
10. R. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated
biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray
detection”, Anal. Chem. , Issue 76, pp. 1824-1831, 2004.
11. L. Malic, T. Veres, and M. Tabrizian, “Detection of DNA hybridization on a configurable digital
microfluidic biochip using SPR imaging”, International Conference on Miniaturized Systems
for Chemistry and Life Sciences , pp. 829-831, 2008.
12. L. Malic, T. Veres, and M. Tabrizian, “Two-dimensional droplet-based surface plasmon
resonance imaging using electrowetting-on-dielectric microfluidics”, Lab on a Chip , Issue 9,
pp. 473-475, 2009.
13. K. Choi, A. Ng, R. Fobel, and A. Wheeler, “Digital microfluidics”, Annual Review of Analytical
Chemistry , Vol. 5, pp. 413-440, 2012.
14. M. Shamsi, K. Choi, A. Ng, A. Wheeler, “A digital microfluidic electrochemical immunoas-
say”, LabonaChip , Issue 14, pp. 547-554, 2014.
15. S. Koster, F. Angile, H. Duan, J. Agresti, A. Wintner, C. Schmitz, A. Rowat, C. Merten, D.
Pisignano, A. Griffiths. and D. Weitz, “Drop-based microfluidic devices for encapsulation of
single cells”, Lab on a Chip , vol. 8, pp. 1110-1115, 2008.
16. R. Daniel, M. Dines, and H. Petach, “The denaturation and degradation of stable enzymes at
high temperatures”, Biochem J. , vol. 317, Issue 1, pp. 1-11, 1996.
17. F. Ji, M. Juntunen, and I. Hietanen, “Evaluation of electrical crosstalk in high-density
photodiode arrays for X-ray imaging applications”, Nuclear Instruments and Methods in
Physics Research , volume 610, issue 1, pp. 28-30, 2009.
18. R. Evans et al., “Optical detection heterogeneously integrated with a coplanar digital microflu-
idic lab-on-a-chip platform”, Proc. IEEE Sensors Conf. , pp. 423-426, Oct. 2007.
19. S. Koester, L. Schares, C. Schow, G. Dehlinger, and R. John, “Temperature-dependent analysis
of Ge-on-SOI photodetectors and receivers”, IEEE International Conference on Group IV
Photonics , pp. 179-181, 2006.
Search WWH ::




Custom Search