Digital Signal Processing Reference
In-Depth Information
57. K. R. Narayanan and G. L. St ¨ ber, A serial concatenation approach to iterative demodula-
tion and decoding, IEEE Trans. Communications , 47, pp. 956-961, (1999).
58. X. Wang and R. Chen, Blind turbo equalization in Gaussian and impulse noise, IEEE
Trans. Vehicular Technology , 50, pp. 1092-1105, (2001).
59. L. Kocarev, F. Lehmann, G. M. Maggio, B. Scanvino, Z. Tasev, and A. Vardy, Nonlinear
dynamics of
iterative decoding systems: Analysis and applications,
IEEE Trans.
Information Theory , 52, pp. 1366-1384, (2006).
60. M. Moher and T. A. Gulliver, Cross entropy and iterative decoding, IEEE Trans.
Information Theory , 44, pp. 3097-3104, (1998).
61. A. Montanari and N. Sourlas, The statistical mechanics of turbo codes, European Physics J.
B , 18, pp. 107-119, (2000).
62. B. Muquet, P. Duhamel, and M. de Courville, “Geometric interpretations of iterative 'turbo'
decoding,” in Proc Int. Symp. Information Theory , June 2002.
63. S. Ikeda, T. Tanaka, and S. Amari, Stochastic reasoning, free energy and information
geometry, Neural Computataion , 16, pp. 1779-1810, (2004).
64. S. Ikeda, T. Tanaka, and S. Amari, Information geometry of turbo and low-density parity-
check codes, IEEE Trans. Information Theory , 50, pp. 1097-1114, (2004).
65. J. Yedidia, W. Freeman, and Y. Weiss, Constructing free-energy approximations and
generalized belief propagation algorithms, IEEE Trans. Information Theory , 51, pp.
2282-2312, (2005).
66. J. M. Walsh, P. A. Regalia, and C. R. Johnson, Jr., “A refined information geometric
interpretation of turbo decoding,” in Proc. Int. Conf. Acoustics, Speech and Signal
Processing , (Philadelphia, PA), May 2005.
67. P. A. Regalia and J. M. Walsh, Optimality and duality of the turbo decoder, Proc. IEEE , 95,
pp. 1362-1377, (2007).
68. P. Moquist and T. M. Aulin, “Turbo decoding as a numerical analysis problem,” in Int.
Symp. Information Theory , (Sorrento, Italy), p. 485, June 2000.
69. P. A. Regalia, “Contractivity in turbo iterations,” in Proc. Int. Conf. Acoustics, Speech and
Signal Processing , vol. 4, (Montreal, Canada), pp. 637-640, May 2004.
70. J. M. Walsh, P. A. Regalia, and C. R. Johnson, Jr., “A convergence proof for the turbo
decoder as an instance of the Gauss-Seidel iteration,” in Int. Symp. Information Theory ,
(Adelaide, Australia), pp. 734-738, Sept. 2005.
71. D. Divsalar, S. Dolinar, and F. Pollara, Iterative turbo decoder analysis based on density
evolution, IEEE J. Selected Areas in Communications , 19, pp. 891-907, (2001).
72. H. El Gamal and A. R. Hommons, Analyzing the turbo decoder using the Gaussian
approximation, IEEE Trans. Information Theory , 47, pp. 671-686, (2001).
73. S. ten Brink, Convergence behavior of iteratively decoded parallel concatenated codes,
IEEE Trans. Communications , 49, pp. 1727-1737, (2001).
74. R. L. Bidan, C. Laot, D. LeRoux, and A. Glavieux, “Analyse de convergence en turbo
d ´ tection,” in Proc. GRETSI-2001 , (Toulouse, France), September 2001.
75. A. Roumy, A. J. Grant, I. Fijalkow, P. D. Alexander, and D. Perez, “Turbo equalization:
Convergence analysis,” in Proc. Int. Conf. Acoustics, Speech and Signal Processing ,
(Salt Lake City, UT), pp. 2645-2648, 2001.
76. G. D. Forney, Jr., Concatenated Codes . Cambridge, MA: MIT Press, 1966.
 
Search WWH ::




Custom Search