Environmental Engineering Reference
In-Depth Information
case our simulation does not exhibit a stationary state during the time of integration.
We have shown a result in an annular domain. In this case the steady state does not
consist of a pattern of concentric circles. The results of the numerical simulations
can be compared qualitatively with experimental results and those reported in the
literature.
The method we used is easy to run in parallel, taking advantage of the features of
the Fourier spectral method.
Acknowledgments Authors acknowledge DGAPA-UNAM by support under project IN116312,
“Vorticidad y ondas no lineales en fluidos”.
References
Bénard H (1900) Les tourbillons cellulaires dans une nappe liquide. Revue Gén Sci Pur Appl
11:1261-1271 and 1309-1328
Bodenschatz E, Pesch W, Ahlers G (2000) Recent developments in Rayleigh-Benard convection.
Annu Rev Fluid Mech 32:709-778
Boyd JP (2000) Chebyshev and Fourier spectral methods. Dover, New York
Chandrasekhar S (1961) Hydrodynamic and Hydromagnetic Stability. Oxford University Press,
New York, Dover
Charru F (2007) Instabilités Hydrodynamiques. EDP Sciences CNRS Éditions, Paris
Drazin PG, Reid WH (1981) Hydrodynamic stability. Cambridge University Press, Cambridge
Fuentes R, Carvajal LF (2005) Método de diferencias finitas en mallas irregulares con soluciones
analíticas parciales aplicado al flujo hidrodinámico. Rev Int Met NumCalc Dis Ing 21(3):263-272
Getling AV, Brausch O (2003) Cellular flow patterns and their evolutionary scenarios in three-
dimensional Rayleigh-Bénard convection. Phys Rev E 67:046313
Guyon E, Hulin J-P, Petit L (2001) Hydrodynamique physique, Savoirs Actuels. EDP Sci-
ences/CNRS Éditions, Paris
Li YR, Ouyang YQ, Peng L, Wu SY (2012) Direct numerical simulation of Rayleigh-Bénard
convection in a cylindrical container of aspect ratio 1 for moderate Prandtl number fluid. Phys
Fluids 24:074103. doi: 10.1063/1.4731296
Paul MR, ChiamK-H, Cross MC, Fischer PF, Greenside HS (2003) Pattern formation and dynamics
in Rayleigh-Bénard convection: numerical simulations of experimentally realistic geometries.
Phys D 184:114-126
Peyret R (2002) Spectral methods for incompressible viscous flow. Springer, New York
Rayleigh L (1916) On convection currents in a horizontal layer of fluid, when the higher temperature
in on the under side. Philos Mag 6(32):529-546
Tagawa T, Ujihara A, Ozoe H (2003) Numerical computation for Rayleigh-Bénard convection of
water in a magnetic field. Int J Heat Mass Transf 46:4097-4104
Ternik P, Rudolf R, Zunic Z (2013) Numerical study of Rayleigh-Bénard natural-convection heat-
transfer characteristics of water-based au nanofluids. Mater Technol 47(2):211-215
Valencia ML (2005) Estudio Numérico y Experimental de Flujo Rayleigh-Bénard en Cavidades
Cúbicas para Régimen Transitorio y Turbulento. PhD Thesis. Universitat Rovira I Virgili. pp
1482-2006. ISBN: 978-84-690-8297-3/D.L: T
Search WWH ::




Custom Search