Geoscience Reference
In-Depth Information
L T = V
A c ¼ A n 0 Z
VNe kL dL ¼ A n 0 P
ð 8
:
7 Þ
0
where A n 0 =A n for leaves at the top of the canopy (mol/m 2 s):
A n 0 ¼ f c V max 0 ; :::
ð
Þ;
f e F p 0 ; :::
ð
Þ;
f s V max 0 ; :::
ð
Þ;
VN 1 e kL T
V
=
; P PAR k :
P ¼
k
The A c value is used to determine the respective conductivity of the leaf canopy
using the modi
ed expression:
g c ¼ m A c
c S h S p þ bL T
where h S and c S are the volume analogs to values h s and c s relative to the leaf
canopy.
The g c parameter is used to estimate the respiration intensity
ʻ E ct :
"
#
e T ðÞ e a
1
q
c p
c
k
E ct ¼
ð
1 W c
Þ;
= g c þ 2r b
where e T ðÞ is the saturated water vapor pressure at a temperature T c (Pa); e a is the
water vapour pressure in an open atmosphere near the leaf canopy (Pa);
ρ
and c p are
c heat capacity, respectively (kg/m 2 , J/kg/K);
the air density and speci
c
is a
psychometric constant; W c is the share of the lead canopy wet area.
To complete a description of equations of the photosynthesis-conductivity
model, the following expressions are given that estimate the ferment supply of
vegetation cellulose V m :
V m ¼ V max f T T ðÞ f W W ð ;
K c ¼ 30 fT T T ð ;
K o ¼ 30 000 fT T T ð ;
2Q t
S ¼ 2600 f T T ð ;
f T T ðÞ ¼
= 1 þ exp s 1 T c s 2
g ;
for C 3 and V m ;
f
½
ð
Þ
f T T ðÞ ¼2Q t =
f
1 þ exp s 1 T c s 2
½
ð
Þ
g 1 þ exp s 3 s 4 T c
f
½
ð
Þ
g;
for C 4 and V m ;
2Q t
f T T ðÞ ¼
= 1 þ exp s 5 T c s 6
g ;
for R d and V m ;
f
½
ð
Þ
f T T ðÞ ¼2
:
1Q t ;
for K c ;
f T T ðÞ ¼1
:
2Q t ;
for K o ;
ð
T c 298
Þ = 10 ;
f T T ðÞ ¼0
:
57 Q t ;
for S
;
Q t ¼
1
f W W ðÞ ¼
= 1 þ exp 0
g :
f
½
:
02
ð
w c w r
Þ
Search WWH ::




Custom Search