Biology Reference
In-Depth Information
Roleda MY, Wiencke C, Hanelt D, Bischof K (2007) Sensitivity of the early life history stages of
macroalgae from the Northern Hemisphere to ultraviolet radiation. Photochem Photobiol
83:851-862. doi: 10.1562/2006-08-17-IR-1005
Roleda MY, Campana GL, Wiencke C, Hanelt D, Quartino ML, Wulff A (2009) Sensitivity of
Antarctic Urospora penicilliformis (Ulotrichales, Chlorophyta) to ultraviolet radiation is life-
stage dependent. J Phycol 45:600-609. doi: 10.1111/j.1529-8817.2009.00691.x
Roleda MY, Morris JN, McGraw CM, Hurd CL (2012) Ocean acidification and seaweed repro-
duction: increased CO 2 ameliorates the negative effect of lowered pH on meiospore germina-
tion in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biol
18:854-864. doi: 10.1111/j.1365-2486.2011.02594.x
Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Policy
document 12/05 Royal Society, London. The Clyvedon press Ltd, Cardiff
Runcie JW, Gurgel CFD, McDermid KJ (2008) In situ photosynthetic rates of tropical marine
macroalgae
at
their
lower depth limit. Eur
J Phycol 43:377-388. doi: 10.1080/
09670260801979303
Russell BD, Connell SD (2009) Eutrophication science: moving into the future. Trends Ecol Evol
24:527-528. doi: 10.1016/j.tree.2009.06.001
Russell BD, Thompson JAI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate
change and local stressors: CO 2 and nutrient-driven change in subtidal rocky habitats. Glob
Change Biol 15:2153-2162. doi: 10.1111/j.1365-2486.2009.01886.x
Russell BD, Passarelli CA, Connell SD (2011) Forecasted CO2 modifies the influence of light in
shaping subtidal habitat. J Phycol doi:10.1111/j.1529-8817.2011.01002.x
Semesi IS, Beer S, Bjork M (2009a) Seagrass photosynthesis controls rates of calcification and
photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Mar Ecol Prog Ser
382:41-47. doi: 10.3354/meps07973
Semesi IS, Kangwe J, Bj
ork M (2009b) Alterations in seawater pH and CO 2 affect calcification
and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuar Coast
Shelf Sci 84:337-341. doi: 10.1016/j.ecss.2009.03.038
Sherlock DJ, Raven JA (2001) Interactions between carbon dioxide and oxygen in the photosyn-
thesis of three species of marine red algae. Bot J Scotl 53:33-43
Smith RG, Bidwell RGS (1989) Inorganic carbon uptake by photosynthetically active protoplast of
the red macroalga Chondrus crispus . Mar Biol 102:1-4
Stanley SM (2008) Effects of global seawater chemistry on biomineralization: past, present and
future. Chem Rev 108:4483-4498. doi: 10.1021/cr800233u
Surif MB, Raven JA (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by
members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic
implications. Oecologia 78:97-105
Surif MB, Raven JA (1990) Photosynthetic gas exchange under emersed conditions in intertidal
and normally submersed members of the Fucales and Laminariales: interpretation in relation to
C isotope ratio and N and water use efficiency. Oecologia 82:68-80
Thoms S, Pahlow M, Wolf-Gladrow DA (2001) Model of the carbon concentrating mechanism in
chloroplasts of eukaryotic algae. J Theor Biol 208:295-313. doi: 10.1006/jtbi.2000.2219
Turley C (2008) Impacts of changing chemistry in a high-CO 2 world. Mineral Mag 72:359-362.
doi: 10.1180/minmag.2008.072.1.359
van de Waal D, Verschoor AM, Verspagen JMH, van Donk E, Huisman J (2010) Climate-driven
changes in the ecological stoichiometry of aquatic ecosystem. Front Ecol Environ 8:145-152.
doi: 10.1890/080178
Vizzini S, Mazzola A (2006) The effects of anthropogenic organic matter inputs on stable carbon
and nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean
coastal area. Sci Total Environ 368:723-731. doi: 10.1016/j.scitotenv.2006.02.001
Wang W-L, Yeh H-W (2003)
13 C values of marine macroalgae from Taiwan. Bot Bull Acad Sin
d
44:107-112
Search WWH ::




Custom Search