Biology Reference
In-Depth Information
NADH
Nicotinamide adenine dinucleotide, reduced form
NAD +
NADp, Nicotinamide adenine dinucleotide, oxidized form
NADPH
Nicotinamide adenine dinucleotide phosphate, reduced form
NADP +
NADPp, Nicotinamide adenine dinucleotide phosphate, oxidized form
PEP
Phosphoenolpyruvate
P i
Orthophosphate, ionic form
Pyr
Pyruvate
Ru5P
Ribulose-phosphate
R5P
Ribose-phosphate
S7P
Sedoheptulose-phosphate
TPG
3-Phosphoglycerate
Xu5P
Xylulose-phosphate
Correspondence between Petri net transitions and enzymatic reactions
l 1
Hexokinase
l 2
Phosphoglucose isomerase
l 3
Phosphofructokinase
l 4
Aldolase
l 5
Triosephosphate isomerase (forw.)
l 6
Triosephosphate isomerase (backw.)
l 7
GAP dehydrogenase
l 8
Reaction path consisting of: phosphoglycerate kinase, phosphoglycerate mutase,
enolase, pyruvate kinase, and lactate dehydrogenase
m 1
G6P oxidation reactions
m 2
Glutathione reductase
m 3
Glutathione oxidation reaction
r 1
Ribulose-phosphate isomerase
r 2
Ribulose-phosphate epimerase
r 3
Transketolase
r 4
Transaldolase
r 5
Transketolase
REFERENCES
Design/CPN. http://www.daimi.au.dk/designCPN/ .
Genrich, H. (2002). Dynamical Quantities in Net Systems. Formal Aspects of Computing 14 , 55-89.
Genrich, H., Kueffner, R. and Voss, K. (2001). Executable Petri Net Models for the Analysis of Metabolic Pathways. Int.
J. STTT 3 , 394-404.
Goss, P. J. E. and Peccoud, J. (1998). Quantitative modeling of stochastic systems in molecular biology by using stochastic
Petri nets. Proc. Natl. Acad. Sci. USA 95 , 6750-6755.
Goss, P. J. E. and Peccoud, J. (1999). Analysis of the stabilizing effect of Rom on the genetic network controlling ColE1
plasmid replication. Pac. Symp. Biocomp. 4 , 65-76.
Heinrich, R. and Schuster, S. (1996). The Regulation of Cellular Systems. Chapman and Hall, New York.
Heinrich, R. and Schuster, S. (1998). The modeling of metabolic systems. Structure, control and optimality. BioSystems
47 , 61-77.
Hofestaedt, R. (1994).
A Petri Net Application of Metabolic Processes.
Journal of System Analysis, modeling and
Simulation 16 , 113-122.
Hofestaedt, R. and Thelen, S.(1998). Quantitative Modeling of Biochemical Networks. In Silico Biol. 1 , 0006.
Koch, I., Heiner, M. (2008) Petri nets in biological network analysis. In: Junker, B., Schreiber, F. (eds), Analysis of
Biological Networks. Wiley and Sons Book Series on Bioinformatics, Chapter 7, pp. 139-179.
Koch, I, Junker, B. H. and Heine, M. (2005) Application of Petri net theory for modeling and validation of the sucrose
breakdown pathway in the potato tuber. Bioinformatics. 21 (7), 1219-1226.
Koch, I., Schuster, S. and Heiner, M. (2000). Using time-dependent Petri nets for the analysis of metabolic networks. In:
DFG-Workshop: Informatikmethoden zur Analyse und Interpretation grosser genomischer Datenmengen, Hofestaedt, R.,
Lautenbach, K. and Lange, M. (eds.), Magdeburg, pp. 15-21.
Matsuno, H., Doi, A., Nagasaki, M. and Miyano, S. (2000). Hybrid Petri net representation of gene regulatory network.
Pac. Symp. Biocomput. 5 , 338-349.
Pfeiffer, T., S anchez-Valdenebro, I., Nuno, J. C., Montero, F. and Schuster, S. (1999). METATOOL: For studying metabolic
networks. Bioinformatics 15 , 251-257.
Reddy, V. N., Mavrovouniotis, M. L. and Liebman, M. N. (1993). Petri Net Representation in Metabolic Pathways. In
Proc. First Intern. Conf. on Intelligent Systems for Molecular Biology, Hunter, L. et al. (please, complete list of editors!)
(eds.), AAAI Press, Menlo Park, pp. 328-336
Reddy, V. N., Liebman, M. N. and Mavrovouniotis, M. L. (1996). Qualitative analysis of biochemical reaction systems.
Comput. Biol. Med. 26 , 9-24.
Schuster, S. and Hilgetag, C. (1994). On elementary flux modes in biochemical reaction systems at steady state. J. Biol.
Syst. 2 , 165-182.
Search WWH ::




Custom Search