Biology Reference
In-Depth Information
Koh, G., Teong, H. F. C., Cl ement, M.-V., Hsu, D. and Thiagarajan, P. S. (2006). A decompositional approach to parameter
estimation in pathway modelling; a case study of the Akt and MAPK pathways and their crosstalk. Bioinformatics 22 ,
e271-e280.
Krizek, B. A. and Meyerowitz, E. M. (1996). Mapping the protein regions responsible for the functional specificities of
the Arabidopsis MADS domain organ-identity proteins. Proc. Natl. Acad. Sci. USA 93 , 4063-4070.
Krizek, B. A. and Fletcher, J. C. (2005). Molecular mechanisms of flower development: An armchair guide. Nat. Rev.
Genet. 6 , 688-698.
Krizek, B. A., Prost, V. and Macias, A. (2000). AINTEGUMENTA promotes petal identity and acts as a negative regulator
of AGAMOUS . Plant Cell 12 , 1357-1366.
Lee, I., Wolfe, D. S., Nilsson, O. and Weigel, D. (1997). A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS .
Curr. Biol. 7 , 95-104.
Lenhard, M., Bohnert, A., Jurgens, G. and Laux, T. (2001). Termination of stem cell maintenance in
Arabidopsis
floral
meristems by interactions between WUSCHEL and AGAMOUS . Cell 105 , 805-814.
Li, X.-Y., MacArthur, S., Bourgon, R., Nix, D., Pollard, D. A., Iyer, V. N., Hechmer, A., Simirenko, L., Stapleton, M.,
Luengo Hendriks, C. L., Chu H. C., Ogawa, N., Inwood, W., Sementchenko, V., Beaton, A., Weiszmann, R., Celniker,
S. E., Knowles, D. W., Gingeras, T., Speed, T. P., Eisen, M. B. and Biggin, M. D. (2008).
Transcription factors bind
thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol. 6 , e27.
Liljegren, S. J., Gustafson-Brown, C., Pinyopich, A., Ditta, G. S. and Yanofsky, M. F. (1999).
Interactions among
APETALA1 , LEAFY , and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11 , 1007-1018.
Lohmann, J. U., Hong, R. L., Hobe, M., Busch, M. A., Parcy, F., Simon, R. and Weigel, D. (2001). A molecular link
between stem cell regulation and floral patterning in Arabidopsis . Cell 105 , 793-803.
Mandel, M. A., Gustafsonbrown, C., Savidge, B. and Yanofsky, M. F. (1992). Molecular characterization of the Arabidopsis
floral homeotic gene APETALA1 . Nature 360 , 273-277.
Matsuno, H., Doi, A., Nagasaki, M. and Miyano, S. (2000) Hybrid Petri net representation of gene regulatory network.
Pac. Symp. Biocomput. 5 , 338-349.
Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M. and Miyano, S. (2003).
Biopathways representation and
simulation on hybrid functional Petri net. In Silico Biol. 3 , 0032.
Melzer, R., Kaufmann, K. and Theißen, G. (2006). Missing links: DNA-binding and target gene specificity of floral
homeotic proteins. In : Advances in Botanical Research, Vo. 44, Developmental genetics of the flower, Soltis, D., Soltis
P. and Leebens-Mack, J. H. (eds.), Academic Press. pp. 209-236.
Mendoza, L. and Alvarez-Buylla, E. R. (1998). Dynamics of the genetic regulatory network for Arabidopsis thaliana
flower morphogenesis. J. Theor. Biol. 193 , 307-319.
Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2003).
Genomic Object Net: I. A platform for modelling and
simulating biopathways. Appl. Bioinformatics 2 , 181-184.
Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2004). A versatile petri net based architecture for modelling and
simulation of complex biological processes. Genome Inform. 15 , 180-197.
Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2005) Computational modeling of biological processes with Petri
net-based architecture, Bioinformatics Technologies, Springer, Berlin Heidelberg, pp. 179-242.
Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2009a). Foundations of Systems Biology - Using Cell Illustrator and
Pathway Databases. Springer, Berlin Heidelberg.
Nagasaki, M., Saito A. and Miyano, S. (2009b). Cell Illustrator 4.0: A Computational Platform for Systems Biology. In
Silico Biology 10 , 0002.
Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y. and Choi, G. (2009). Genome-wide analysis of genes
targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in
Arabidopsis . Plant Cell
21 , 403-419.
Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. and Yanofsky, M. F. (2000).
B and C floral organ identity functions
require SEPALLATA MADS-box genes. Nature 405 , 200-203.
Pelaz, S., Gustafson-Brown, C., Kohalmi, S. E., Crosby, W. L. and Yanofsky, M. F. (2001). APETALA1 and SEPALLATA3
interact to promote flower development. Plant J. 26 , 385-394.
Peterson, J. L. (1981) Petri Net Theory and the Modelling of Systems. Prentice Hall.
Petri, C. A. (1962). Fundamentals of a theory of asynchronous information flow. IFIP Congress 1962, 386-390.
Putterill, J., Laurie, R. and Macknight, R. (2004). It's time to flower: the genetic control of flowering time. Bioessays 26 ,
363-373.
Reddy, V. N., Mavrovouniotis, M. L. and Liebman, M. N. (1993). Petri net representations in metabolic pathways. Proc.
Int. Conf. Intell. Syst. Mol. Biol. 1 , 328-336.
Sato, Y., Hashiguchi, Y. and Nishida, M. (2009). Evolution of multiple phosphodiesterase isoforms in stickleback involved
in cAMP signal transduction pathway. BMC Syst. Biol. 3 , 23.
Search WWH ::




Custom Search