Biology Reference
In-Depth Information
[7]
Schmitz, Y., Lee, C. J., Schmauss, C., Gonon, F. and Sulzer, D. (2001). Amphetamine distorts stimulation-dependent
dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores. J. Neurosci. 21 , 5916-5924.
[8]
Sulzer, D., Sonders, M. S., Poulsen, N. W. and Galli, A. (2005). Mechanisms of neurotransmitter release by amphetamines:
a review. Prog. Neurobiol. 75 , 406-433.
[9]
Costa, E., Groppetti, A. and Naimzada, M. K. (1972). Effects of amphetamine on the turnover rate of brain catecholamines
and motor activity. Br. J. Pharmacol. 44 , 742-751.
[10]
Goutsias, J. (2007). Classical versus stochastic kinetics modeling of biochemical reaction systems. Biophys. J. 92 ,
2350-2365.
[11]
Wu, J., Qi, Z. and Voit, E. (2009). Dopamine signaling with noise and delays. https://cionline.hgc.jp/cifileserver/
launchCIOPlayer?model=http://www.csml.org/download/model/csml 30/dopamine signaling with noise and delays.csml.
gz .
[12]
Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. Annu. Rev. Phys. Chem. 58 , 35-55.
[13]
Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2003). Genomic Object Net:
I. A platform for modeling and
simulating biopathways. Appl. Bioinformatics 2 , 181-184.
[14] Voit, E. O. (2000). Computational analysis of biochemical systems: a practical guide for biochemists and molecular
biologists. Vol. xii, Cambridge University Press, Cambridge, UK.
[15] Wu, J. and Voit, E. (2009). Hybrid modeling in biochemical systems theory by means of functional Petri nets. J. Bioinform.
Comput. Biol. 7 , 107-134.
[16] Wu, J. and Voit, E. (2009). Integrative biological systems modeling: challenges and opportunities. Front. Comput. Sci.
China 3 , 92-100.
[17] Qi, Z., Miller, G. W. and Voit, E. O. (2008). Computational systems analysis of dopamine metabolism. PLoS ONE 3 ,
e2444.
[18] Shiraishi, F. and Savageau, M. A. (1992). The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of
alternative kinetic representations. J. Biol. Chem. 267 , 22912-22918.
[19] Mocek, W. T., Rudnicki, R. and Voit, E. O. (2005). Approximation of delays in biochemical systems. Math. Biosci. 198 ,
190-216.
[20] Miyano, S. (2008). Cell Illustrator website. http://www.cellillustrator.com/ .
[21] Sun, J.-Y., Wu, X.-S. and Wu, L.-G. (2002). Single and multiple vesicle fusion induce different rates of endocytosis at a
central synapse. Nature 417 , 555-559.
[22] Ryan, T. A., Smith, S. J. and Reuter, H. (1996). The timing of synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA
93 , 5567-5571.
[23]
Zhang, Q., Li, Y. and Tsien, R. W. (2009). The dynamic control of kiss-and-run and vesicular reuse probed with single
nanoparticles. Science 323 , 1448-1453.
[24]
Fernandez-Alfonso, T. and Ryan, T. A. (2006). The efficiency of the synaptic vesicle cycle at central nervous system
synapses. Trends Cell Biol. 16 , 413-420.
[25]
Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity:
a
hypothesis for the etiology of schizophrenia. Neuroscience 41 , 1-24.
[26]
Sudhof, T. C. (2004). The synaptic vesicle cycle. Annu. Rev. Neurosci. 27 , 509-547.
[27]
Gaffield, M. A., Rizzoli, S. O. and Betz, W. J. (2006). Mobility of synaptic vesicles in different pools in resting and
stimulated frog motor nerve terminals. Neuron 51 , 317-325.
Search WWH ::




Custom Search