Biology Reference
In-Depth Information
ACKNOWLEDGEMENTS
This work was supported by Polish Ministry of Education and Science grant KBN-8 T11F 021 28.
REFERENCES
Bryant, R. E. (1992). Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams. ACM Computing Surveys
24 , 293-318.
Benedetti, M. (2005). sKizzo: a Suite to Evaluate and Certify QBFs. In: Proc. 20th International Conference on
Automated Deduction (CADE05), Nieuwenhuis, R. (ed.), Springer LNCS 3632, pp. 369-376.
Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C. H., Minokawa, T., Amore, G., Hinman, V.
Arenas-Mena, C., Otim, O., Brown, C. T., Livi, C. B., Lee, P. Y., Revilla, R., Rust, A. G., Pan, Z. J., Schilstra, M. J.,
Clarke, P. J. C., Arnone, M. I., Rowen, L., Cameron, R. A., McClay, D. R., Hood, L. and Bolouri, H. (2002). A genomic
regulatory network for development. Science 295 , 1669-1678.
Espinosa-Soto, C., Padilla-Longoria, P. and Alvarez-Buylla, E. R. (2004). A gene regulatory network model for cell-fate
determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression
profiles. Plant Cell 16 , 2923-2939.
Gat-Viks, I., Tanay, A. and Shamir, R. (2004). Modeling and analysis of heterogeneous regulation in biological networks.
J. Comput. Biol. 11 , 1034-1049.
Ginsburg, S. and Spanier, E. (1966). Semigroups, Presburger formulas and languages. Pacific J. Math. 16 , 285-296.
Goss, P. J. and Peccoud, J. (1998). Quantitative modeling of stochastic systems in molecular biology by using stochastic
Petri nets. Proc. Natl. Acad. Sci. USA 95 , 6750-6755.
Fischer, M. J. and Rabin, M. O. (1974).
Super-exponential complexity of Presburger arithmetic.
Proc.
SIAM-AMS
Symposium in Applied Mathematics 7 , 27-41.
Hardy, S. and Robillard, P. N. (2004). Modeling and simulation of molecular biology systems using petri nets: modeling
goals of various approaches. J. Bioinform. Comput. Biol. 2 , 595-613.
Matsuno, H., Doi, A., Nagasaki, M. and Miyano, S. (2000). Hybrid Petri net representation of gene regulatory network.
Pac. Symp. Biocomput. 5 , 338-349.
Mendoza, L. and Alvarez-Buylla, E. R. (1998). Dynamics of the genetic regulatory network for Arabidopsis thaliana
flower morphogenesis. J. Theor. Biol. 193 , 307-319.
Mendoza, L., Thieffry, D. and Alvarez-Buylla, E. R. (1999).
Genetic control of flower morphogenesis in Arabidopsis
thaliana : a logical analysis. Bioinformatics 15 , 593-606.
Oppen, D. C. (1978). A 2 22 pn upper bound on the complexity of Presburger arithmetic. J. Comput. System Sciences 16 ,
323-332.
Peleg, M., Rubin, D. and Altman, R. B. (2005). Using Petri Net tools to study properties and dynamics of biological
systems. J. Am. Med. Inform. Assoc. 12 , 181-199.
Soule, C. (2003). Graphic Requirements for Multistationarity. ComPlexUs 1 , 123-122.
Stryer, L. (1995). Biochemistry, Freeman, New York.
Thomas, R. and Kaufman, M. (2001a).
Multistationarity, the basis of cell differentiation and memory.
I. Structural
conditions of multistationarity and other nontrivial behavior. Chaos 11 , 170-179.
Thomas, R. and Kaufman, M. (2001b). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis
of regulatory networks in terms of feedback circuits. Chaos 11 , 180-195.
Voss, K., Heiner, M. and Koch, I. (2003). Steady state analysis of metabolic pathways using Petri nets. In Silico Biol. 3 ,
0031.
Search WWH ::




Custom Search