Civil Engineering Reference
In-Depth Information
There are two independent eigen-value solutions to this problem. First, there is one that only
involves z ( x,t ) displacements, defined by
4
n
L π
2
EI
m
a
0
ω
=
⎝ ⎠
y
z
which will render n eigen-values and corresponding eigen-vectors
0
⎢ ⎥
EI
nx
π
2
y
(
)
()
n
x
sin
1
0
ω
=
π
and
φ
=
1
1
⎣ ⎦
n
4
n
mL
The second solution involves a combined motion of y ( x,t ) and θ( x,t ) displacements. It is defined by
4
n
⎛ ⎞
π
2
2
EI
ω
m
ω
me
⎜ ⎟
z
L
a
⎡⎤
⎝ ⎠
y
=
0
⎢⎥
2
22
a
n
n I
π
π
⎢⎥
⎛ ⎞
⎣⎦
θ
2
w
2
me
GI
m
ω
+
ω
⎜ ⎟
t
θ
L
2
L
⎝ ⎠
and it will render two different eigen-values and corresponding eigen-vectors:
⎢ ⎥
1/2
1
2
ˆ
ˆ
K
1
+
ω
1
ω
nx
π
ˆ
2
()
θ
eK
ω
=
+
+
φ
x
=
sin
0
⎢ ⎥
⎣ ⎦
2
2
n
2
n
mem
2
2
L
θ
a
ˆ
θ
2
⎢ ⎥
1/2
1
2
K
ˆ
ˆ
1
+
ω
1
ω
nx
π
ˆ
2
()
θ
eK
ω
=
+
φ
x
=
sin
0
⎢ ⎥
⎣ ⎦
3
3
n
2
n
mem
2
2
L
θ
a
ˆ
θ
3
4
2
2
n
L π
n
π
n
π
K
K m
= ⎝ ⎠
⎛ ⎞
⎛ ⎞
, ˆ
K
EI
K
z
, ˆ
mK θ
θ
where:
,
K
=
GI
+
EI
=
ω =
⎜ ⎟
⎜ ⎟
z
z
θ
t
w
L
L
K θ
⎝ ⎠
⎝ ⎠
ˆ
ˆ
ˆ
ˆ
1
ω
1
ω
1
1
ω
1
ω
1
ˆ
ˆ
2
2
a
ˆ
e K
a
ˆ
e K
⎝ ⎢ ⎣ ⎦
It may be of some interest to develop the modal mass associated with these mode shapes. The
cross sectional mass matrix is given by
=
+
=
θ
θ
2
3
e
2
2
e
2
2
[
]
M
=
diagmmm θ
, and thus
0
L
L
nx
π
T
2
M
φ M φ
dx
m
sin
dx
mL
/ 2
=
=
=
1
1
0
1
n
n
n
0
0
L
L
nx
π
(
)
(
)
T
2
2
2
M
φ M φ
dx
m
a
ˆ
m
sin
dx
m
a
ˆ
m
L
/ 2
=
=
+
=
+
2
2
0
2
θθ
θθ
n
n
n
2
L
2
0
0
L
T
M
=
φ M φ
dx
=
M
3
3
0
3
2
n
n
n
n
0
 
Search WWH ::




Custom Search