Civil Engineering Reference
In-Depth Information
where
{
}
(
)
(
)
Zt
,
Z
ˆ
Q
=
B
ψ v
(9.47)
i
i
Qi
00
n
0
n
where
i =
1 or 2
and where
0
0
0
() (
)
() (
)
()
2
DC I
Z
DC
BC
I
Z
DC
BC
I
Z
Du i
D
Lv i
D
Lw i
2
()
() (
)
() (
)
VZ
L
ρ
()
2
BC I
Z
BC
DC
I
Z
BC
DC
I
Z
+
+
i
Lu i
L
Dv i
L
Dw i
B
=
Q
0
4
2
()
2
()
2
()
2
BC I
Z
BC I Z
BC I
Z
Mu
i
Mv
i
Mw
i
0
0
0
0
0
0
(9.48)
Thus,
()
()
ˆ
t
t
RBψ v
=
(9.49)
n
Q
n
n
n
where
()
Z
B
0
Q
1
0
B
=
Q n
(
)
Z
0
B
Q
2
0
n
ψ 0
0
ψ
=
(9.50)
n
0 ψ
0
n
()
(
ˆ
Z
Z
v
01
ˆ
v
=
n
)
ˆ
v
02
n
and, as mentioned above, where indices 1 and 2 refers to element ends.
The motion induced (aerodynamic) load vector:
As shown in Eq. 5.8, the motion induced load will comprise two contributions, one
which is proportional to the element velocity and one which is proportional to its
dynamic displacements. Thus,
0
0
⎡ ⎤
⎡ ⎤
⎢ ⎥
⎢ ⎥
r
r
⎢ ⎥
y
⎢ ⎥
y
el
el
⎢ ⎥
⎢ ⎥
r
r
z
z
(
)
⎢ ⎥
⎢ ⎥
el
el
q
xt
,
=
c
+
k
(9.51)
ae
ae
ae
0
⎢ ⎥
0
⎢ ⎥
r
r
θ
θ
el
el
⎢ ⎥
⎢ ⎥
⎢ ⎥
0
⎢ ⎥
0
⎢ ⎥
⎢ ⎥
0
0
⎣ ⎦
⎣ ⎦
 
Search WWH ::




Custom Search