Civil Engineering Reference
In-Depth Information
The variance of
M
is then defined by
z B
2
{
}
2
2
()
( )
()
( )
xEMxt
,
E
Gxqxt x
,
σ
=
=
Mr
z
r
M
y
z
B
z
B
L
(7.17)
exp
()
()
( ) ( )
∫∫
GxGxEqxt
,
qxt
,
x x
=
M
1
M
2
y
1
y
2
1
2
z
z
L
exp
rendering a spatial and time domain averaging of the fluctuating cross sectional load.
Introducing Eq. 7.15 then this space and time domain averaging is given by
(
)
(
)
Eq x t q x t
,
,
=
y
1
y
2
2
VB
D
D
D
D
ρ
⎫⎧
ECu
2
CCw
2
Cu
CCw
+
+
⎬⎨
D
1
D
L
1
D
2
D
L
2
2
B
B
B
B
⎭ ⎩
(7.18)
(
)
(
)
(
)
(
)
where
. It is a usual
assumption in wind engineering that cross-covariance between different velocity
components is negligible, i.e. that
uuxt
1 ,
,
uuxt
2 ,
and
wwxt
1 ,
,
wwxt
2 ,
=
=
=
=
1
2
1
2
(
)
(
)
(
)
(
)
Euxt wxt
,
,
⎤ ⎡
=
Euxt wxt
,
,
0
(7.19)
⎦ ⎣
1
2
2
1
in which case
(
)
(
)
Eq x t q x t
,
,
=
y
1
y
2
2
2
2
VB
D
D
ρ
⎞ ⎛
(
)
(
)
(
)
(
)
2
CEuxt
,
uxt
,
CCEwxt
,
wxt
,
+
⎟ ⎜
D
1
2
D
L
1
2
2
B
B
⎠ ⎝
(7.20)
Introducing (see chapters 2.2 and 3.3)
(
)
(
)
2
(
)
E ux t ux t
,
,
x
=
σρ Δ
1
2
u u
(7.21)
(
)
(
)
2
(
)
E wx t wx t
,
,
=
σ
ρ
Δ
x
1
2
w
w
where
ρ
and
ρ
are the covariance coefficients of the u- and w- components, and
uu
ww
where
x
=− is spanwise separation, then
xx
Δ
12
Search WWH ::




Custom Search