Civil Engineering Reference
In-Depth Information
VB
ρ
(
)
ˆ
()
T
Qt
φ Bv
dx
=
(6.33)
i
i
q
2
L
exp
T
()
x
where
φ
=
φφφ
. The Fourier transform of Eq. 6.33
i
y
z
θ
i
ρ
VB
(
)
ˆ
()
T
i
a
φ Ba
dx
ω
=
(6.34)
q
v
Q i
2
L
exp
where
T
[
]
(
)
x
,
a
a
(6.35)
contains the Fourier amplitudes of the u and w components. This will then render the
following modal load spectrum
a
ω
=
v
u
w
1
(
)
()
*
S
lim
a
a
ω
=
Q
Q
Q
π
T
i
i
i
T
→∞
T
⎤ ⎡
2
VB
1
ρ
(
)
(
)
ˆ
ˆ
T
*
⎥ ⎢
T
lim
dx
dx
=
φ Ba
φ Ba
i
q
v
i
q
v
2
T
⎥ ⎢
π
T
→∞
L
L
⎦ ⎣
exp
exp
2
VB
ρ
{
}
ˆ
ˆ
T
()
() (
)
T
()
()
∫∫
=
φ
x
B
x
S
Δω
x
,
B
x
φ
x
dx dx
i
1
q
1
v
q
2
i
2
1
2
2
L
exp
(6.36)
where
*
*
aa
aa
S
S
1
1
u
u
u
w
uu
uw
(
)
*
(
)
T
(
)
x
,
lim
x
,
x
,
lim
S
Δω
=
a
ω
a
ω
=
=
v
v
1
v
2
T
T
*
*
SS
π
π
T
→∞
T
→∞
aa
aa
⎥ ⎣
wu
ww
wu
ww
(6.37)
This is greatly simplified if the cross spectra between flow components are negligible,
i.e.
SS
=
0
, see Eq. 6.17. Then
uw
wu
2
2
VB
ρ
()
()
S
ω
=
J
ω
(6.38)
i
Q i
2
where:
{
}
ˆ
ˆ
ˆ
2
T
()
()
2
(
)
T
()
()
J
∫∫ φ
x
x
x
,
x
x
dx dx
=
B
I S
Δω
B
φ
(6.39)
i
i
1
q
1
v
v
q
2
i
2
1
2
L
exp
is the joint acceptance function, and where
 
Search WWH ::




Custom Search