Civil Engineering Reference
In-Depth Information
2
VB
1
D
D
ρ
()
*
*
S
lim
2
Ca
C
C a dx
ω
=
φ
+
y
D
u
D
L
w
Q y
2
π
T
B
B
T
→∞
L
exp
(6.15)
D
D
2
Ca
C
C a dx
φ
+
y
D
u
D
L
w
B
B
L
exp
Acknowledging that
m
1
(
)
*
(
)
(
)
Sx
,
lim
a
x
,
a
x
,
uw
,
Δω
=
ω
ω
where
=
(6.16)
mn
m
1
n
2
T
n
π
T
→∞
and assuming that the cross spectra between flow components are negligible, i.e. that
(
)
(
)
Sx
,
Sx
,
0
Δω
=
Δω
(6.17)
uw
wu
then
2
2
VB
ρ
()
()
S
J
ω
=
ω
(6.18)
y
Q y
2
where
2
⎪⎛
(
)
Sx
,
D
Δω
2
()
( ) ( )
uu
J
∫∫
x
x
2
C
I
ω
=
φ
φ
y
y
1
y
2
D
u
2
B
σ
u
L
exp
(6.19)
2
(
)
Sx
Δω
σ
,
D CCI
ww
x x
+
DLw
12
B
2
w
is the joint acceptance function containing the span-wise statistical averaging of variance
contributions from the fluctuating u and w flow components.
I
I
and
are the
u
w
corresponding turbulence intensities and
Δ =− is the spatial (span-wise)
separation. Combining Eqs. 6.11 and 6.18, using
x
xx
12
, and introducing the
2
K
M
=
ω
y
yy
modally equivalent and evenly distributed mass
2
2
2
mM
∫ ∫
x m x
x
=
φ
φ
φ
(6.20)
y
y
y
y
y
y
L
L
L
then the following expression is obtained for the standard deviation of the dynamic
response in the along wind y direction
 
Search WWH ::




Custom Search