Agriculture Reference
In-Depth Information
Table 21.1. Carbon stocks (average ± standard error) and texture (average ± standard error) of Cerrado
biome soils under different land use sampled at depths of 0- 20, 0- 30 and 0-40 cm. (From Corazza et al .,
1999; Freitas et al ., 2000; Chapuis Lardy et al ., 2002; Ruggiero et al ., 2002; Machado et al ., 2003; Roscoe
and Buurman, 2003; Bayer et al ., 2004, 2006; D'Andréa et al ., 2004; Neves et al ., 2004; Silva et al ., 2004;
Corbeels et al ., 2006; Siqueira Neto, 2006; Araújo et al ., 2007; Frazão, 2007; Jantalia et al ., 2007; Machado
et al ., 2007; Metay et al ., 2007; Paiva and Faria, 2007; Rangel and Silva, 2007; Luca et al ., 2008; Maquère
et al ., 2008; Beutler et al ., 2009; Carvalho et al ., 2009; Czycza et al ., 2009; Dieckow et al ., 2009; Faria et al .,
2009; Leite et al ., 2009; Maia et al ., 2009; Matias et al ., 2009; Moreira et al ., 2009; Pulrolnik et al ., 2009;
Rossi et al ., 2009; Salton et al ., 2011.)
C stock
Sand
Clay
Clay + silt
(Mg C ha -1 )
(g kg -1 )
(g kg -1 )
(g kg -1 )
0-20 cm
NV
44.09
± 2.72
371.35
± 9968
493.00
± 54.55
661.84
± 91.78
P
41.6
± 2.37
336.11
± 99.08
532.77
± 43.83
597.30
± 99.01
CT
32.02
± 1.78
431.57
± 88.83
453.88
± 52.60
579.47
± 95.13
NT
45.98
± 1.89
244.48
± 76.90
488.32
± 46.81
804.52
± 55.15
PF
41.36
± 4.72
205.17
± 17.98
571.00
± 84.94
928.25
± 18.86
0-30 cm
NV
49.91
± 2.82
387.79
± 186.65
470.00
± 71.89
609.77
± 144.28
P
46.35
± 2.76
455.58
± 181.28
513.64
± 55.90
541.75
± 179.39
CT
44.38
± 2.26
462.55
± 121.28
469.00
± 67.06
559.30
± 85.66
NT
56.48
± 3.42
453.33
± 230.96
430.00
± 108.64
572.53
± 127.56
PF
53.88
± 5.54
202.00
± 18.02
325.00
± 112.70
759.00
± 25.67
0-40 cm
NV
65.87
± 4.97
472.28
± 97.06
202.71
± 65.55
794.54
± 64.04
P
67.49
± 2.66
498.43
± 56.18
337.58
± 71.50
706.92
± 112.68
CT
53.09
± 3.67
386.07
± 85.02
370.15
± 82.26
616.09
± 92.57
NT
76.73
± 1.97
523.25
± 82.73
225.00
± 90.00
775.00
± 90.00
PF
72.09
± 7.99
466.00
± 188.98
291.00
± 68.58
740.00
± 77.57
NV, native vegetation; P, pasture; CT, conventional tillage; NT, no tillage; PF, planted forest.
a special emphasis on crop-livestock and
crop-livestock-forestry integrated systems
(Sisti et al ., 2004; Bayer et al ., 2006;
Bustamante et al ., 2006; Corbeels et al ., 2006;
Jantalia et al ., 2007; Batlle-Bayer et al ., 2010;
Carvalho et al ., 2010b) ( Table 21.2 ).
Conservation or NT agriculture can
also improve carbon sequestration in soils
under agricultural use in the semi-arid and
subhumid regions of the Pampas. Long-term
field experiments have shown that under
NT, significantly higher amounts of carbon
were sequestered in stabilized C fractions
than under conventional tillage (CT) (9.2
versus 11.3 Mg C ha - 1 in the < 50 μm frac-
tion under CT and NT, respectively). This
finding indicates that soils under NT can
act as a carbon sink, while soils under CT
as a source (Quiroga et al ., 2009). However,
this might not be the case in NT production
systems without crop rotation (Díaz Zorita
et al ., 2002; Steinbach and Alvarez, 2006;
Álvarez et al ., 2009).
The response of SCSs to different agri-
cultural systems varies significantly accord-
ing to soil type, particularly regarding its
textural properties, which controls vegeta-
tion structure, biomass production and soil
carbon dynamics (Hassink, 1997; Zinn et al .,
2002; Noellemeyer et al ., 2006; Luca et al .,
2008; Gili et al ., 2010). Sandy soils are highly
susceptible to degradation under LUC and
will lose carbon faster than soils with finer
textures (Noellemeyer et al ., 2006).
Enhancement of soil fertility has also
been associated with soil carbon build-up
and retention. Native grassland areas in the
Cerrado biome, converted to pastures, have
been shown to store significantly more carbon
in the soil profile when fertilized. Pastures
( Brachiaria brizantha ) on soils enriched with
mineral (50 kg N ha 1 , as ammonium sulfate)
 
 
 
Search WWH ::




Custom Search