Biomedical Engineering Reference
In-Depth Information
Clark, R. A. F., Quinn, H. J., Winn, H. J., & Colvin, R. B. (1983). Fibronectin beneath reepithelial-
izing epidermis in vivo: Sources and significance. The Journal of Investigative Dermatology,
80, 26-30.
Clark, R. A. F., Nielsen, L. D., Welch, M. P., & McPherson, J. M. (1995). Collagen matrices at-
tenuate the collagen synthetic response of cultured fibroblasts to TGF-beta. Journal of Cell
Science, 108, 1251-1261.
Cohen, I. K. (1991). Wound healing models to study connective tissue metabolism: Normal and
chronic wounds. In A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, &
G. Skover (Eds.), Clinical and experimental approaches to dermal and epidermal repair . New
York: Alan R. Liss.
Cohen, S. (1959). Purification and metabolic effects of a nerve growth-promoting protein from
snake venom. The Journal of Biological Chemistry, 234, 1129-1137.
Cohen, J., Burne, J. F., Winter, J., & Bartlett, P. F. (1986). Retinal ganglion cells lose response to
laminin with maturation. Nature, 322, 465-467.
Coleman, C., Tuan, T. L., Buckley, S., Anderson, K. D., & Warburton, D. (1998). Contractility,
transforming growth factor-beta, and plasmin in fetal skin fibroblasts: Role in scarless wound
healing. Pediatric Research, 43, 403-409.
Colwell, A. S., Longaker, M. T., & Lorenz, H. P. (2005). Mammalian fetal organ regeneration.
Advances in Biochemical Engineering/Biotechnology, 93, 83-100.
Colwell, A. S., Krummel, T. M., Kong, W., Longaker, M. T., & Lorenz, H. P. (2006). Skin wounds
in the MRL/MPJ mouse heal with scar. Wound Repair and Regeneration, 14, 81-90.
Comninou, M., & Yannas, I. V. (1976). Dependence of stress-strain nonlinearity of connective tis-
sues on the geometry of collagen fibers. Journal of Biomechanics, 9, 427-433.
Compton, C. C., Gill, J. M., Bradford, D. A., Regauer, S., Gallico, G. G., & O'Connor, N. E.
(1989). Skin regenerated from cultured epithelial autografts on full-thickness burn wounds
from 6 days to 5 years after grafting. Laboratory Investigation, 60, 600-612.
Compton, C. C., Butler, C. E., Yannas, I. V., Warland, G., & Orgill, D. P. (1998). Organized skin
structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratino-
cytes. The Journal of Investigative Dermatology, 110, 908-916.
Contard, P., Bartel, R. L., Jacobs 2d, L., Perlish, J. S., MacDonald 2d, E. D., Handler, L., Cone,
D., & Fleischmajer, R. (1993). Culturing keratinocytes and fibroblasts in a three-dimensional
mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone. The
Journal of Investigative Dermatology, 100, 35-39.
Cook, J. R., & Van Buskirk, R. G. (1995). The matrix form of collagen and basal microporosity
influence basal lamina deposition and laminin synthesis/secretion by stratified human keratino-
cytes in vitro. In Vitro Cellular & Developmental Biology. Animal, 31, 132-139.
Coolen, N. A., Verkerk, M., Reijnen, L., Vlig, M., van den Bogaerdt, A. J., Breetveld, M., Gibbs,
S., Middelkoop, E., Ulrich, M. M. (2007). Culture of keratinocytes for transplantation without
the need of feeder layer cells. Cell Transplantation, 16, 649-661.
Cooper, M. L., & Hansbrough, J. F. (1991). Use of a composite skin graft composed of cultured hu-
man keratinocytes and fibroblasts and a collagen-GAG matrix to cover full-thickness wounds
on athymic mice. Surgery, 109, 198-207.
Cooper, M. L., Hansbrough, J. F., Spielvogel, R. L., Cohen, R., Bartel, R. L., & Naughton, G.
(1991). In vivo optimization of a living dermal substitute employing cultured human fibro-
blasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials, 12, 243-248.
Cooper, M. L., Andree, C., Hansbrough, J. F., Zapata-Sirvent, R. L., & Spielvogel, R. L. (1993).
Direct comparison of a cultured composite skin substitute containing human keratinocytes and
fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. The
Journal of Investigative Dermatology, 101, 811-819.
Cordeiro, P. G., Seckel, B. R., Lipton, S. A., D'Amore, P. A., Wagner, J., & Madison, R. (1989).
Acidic fibroblast growth factor enhances peripheral nerve regeneration in vivo. Plastic and
Reconstructive Surgery, 83, 1013-1019.
Search WWH ::




Custom Search