Hardware Reference
In-Depth Information
51. Filanovsky IM (2001) Current conveyor, Voltage conveyor, Gyrator. In: Proceedings of 44th
IEEE midwest symposium on circuits and systems, Dayton, OH, vol 2, pp 314-317
52. Cataldo GD, Ferri G, Pennisi S (1998) Active capacitance multipliers using current con-
veyors. In: Proceedings of 1998 IEEE international symposium on circuits and systems,
Monterey, CA, vol 2, pp 343-346
53. Vrba K, Cajka J (1997) High-order one-port elements for low pass filter realization. J Electr
Eng 48:31-34
54. Higashimura M, Fukui Y (1991) RC active realization of mutually coupled circuit. IEEE Int
Symp Circ Syst (ISCAS) 3:1343-1346
55. Ishida M, Higashimura M, Fukui Y, Ebisutani K (1988) Synthesis of immittance function
using current conveyors. IEEE Int Symp Circ Syst (ISCAS) 3:2681-2684
56. Higashimura M, Fukui Y (1988) Novel method for realizing higher-order immittance func-
tion using current conveyors. IEEE Int Symp Circ Syst (ISCAS) 3:2677-2680
57. Dostal T, Pospisil J (1982) Current and voltage conveyors-A family of three-port immittance
converters. In: Proceedings of ISCAS, Roma, pp 419-422
58. Salawu RI (1980) Realization of frequency dependent negative resistance. Microelectron
Reliab 20:853-857
59. Svoboda JA (1989) Analyzing networks containing current conveyors. Int J Electron 67
(6):899-906
60. Horng JW, Lee MH, Hou CL (1995) Universal active filter using four OTAs and one CCII. Int
J Electron 78:903-906
61. Soliman AM (1995) Theorem relating a class of op-amp and current conveyor circuits. Int J
Electron 79:53-61
62. Celma S, Martinez PA, Sabadell J (1996) A Transformation method for equivalent infinite-
gain Op-amp to unity-gain CCII networks. IEEE Trans Circ Syst-I 43:61-63
63. Wang Ke Chang, Aronhime P, Desai M (1996) New network theorems for current-mode
circuit design. In: ISCAS
96 1, Atlanta, GA, pp 365-368
64. Sinsky JH, Westgate CR (1996) A new approach to designing active MMIC tuning elements
using second-generation current conveyors. IEEE Microw Guid Wave Lett 6:326-328
65. Papazoglou CA, Karybakas CA (1998) A transformation to obtain CCII-based adjoint of op-
amp-based circuits. IEEE Trans Circ Syst-II 45:894-898
66. Rathore TS, Khot UP (2012) Current conveyor equivalent circuits. Int J Eng Technol 4:1-7
67. Keskin AU, Toker A (2004) A NIC with impedance scaling properties using unity gain cells.
Analog Integr Circ Sig Process 41:85-87
68. Hou AS (2004) A wide bandwidth isolation amplifier design using current conveyors. Analog
Integr Circ Sig Process 40:31-38
69. Hua WG, Fukui Y, Kubota K, Watanabe K (2011) Voltage-mode to current-mode conversion
by an extended dual transformation. IEEE Int Symp Circ Syst (ISCAS) 3:1833-1836
70. Natarajan S (1991) High frequency active compensation of integrators using CCII and their
stability analysis. IEEE Int Symp Circ Syst (ISCAS), Singapore, 3:1432-1435
71. Pospisil J (1983) Resistive multiport network synthesis using arbitrary network matrix
decomposition. ECCTD, Stuttgart, Germany, pp 1-6
72. Farag Fathi A (2009) Digitally programmable CMOS current-conveyor circuit for filter
design. In: International symposium on signal circuits and systems, Lasi, pp 9-10
73. Tokmakci M, Alci M (2008) A CMOS membership function circuit employing single current
differencing buffered amplifier. In: Informacije MIDEM, vol 38, Ljubljana, pp 140-143
74. Alarcon E, Romer IA, Poveda A, Porta S, Salamero LM (2004) CCII-based analog integrated
circuit for sliding-mode control of switching power converters. Analog Integr Circ Sig
Process 38:203-213
75. Singh D, Afzal N, Choudekar P, Yadav SK (2014) CMOS digitally programmable grounded
inductor. In: International conference signal processing and integrated networks (SPIN),
Noida, pp 492-496
'
Search WWH ::




Custom Search