Hardware Reference
In-Depth Information
V in2
V in1
V in4
V in3
I in1
I G2
R 2
I in2
I G3
I G1
R 1
R 3
V out
I in3
I x(DDCC1)
I x(DDCC3)
I x(DDCC2)
I out
y 1
x
V in6
y 1
x
y 1
x
DDCC(1) z 1
z 2
DDCC(2)
DDCC(3)
y 2
V in5
y 2
y 2
y 3
y 3
z+
z−
y 3
z−
I z−(DDCC2)
I z2−(DDCC1)
I z+(DDCC1)
I z−(DDCC3)
C 2
C 1
Fig. 12.22 Mixed-mode VM universal biquad proposed by Lee [ 51 ]
N 2 s
ðÞ¼
sC 1 I in 1 þ
ð
I in 2
Þ=
R 2 þ
ð
I in 1
I in 3
Þ=
R 1 R 2
ð
12
:
85
Þ
s 2 C 1 C 2 I in 1
N 3 s
ðÞ¼
sC 1 I in 2
ð
Þ=
R 2 þ
I in 3 =
R 1 R 2
ð
12
:
86
Þ
and
s 2 C 1 C 2 þ
ðÞ¼
sC 1 =
R 2 þ
=
R 1 R 2
ð
:
Þ
Ds
1
12
87
In [ 51 ], it has been shown that the circuit can realize a large variety of filter
responses, in CM, VM transadmittance mode and transimpedance mode. For the
details of all these special cases, the reader is referred to [ 51 ].
Tangsrirat-Channumsin-Pukkalanun biquad In 2013 Tangsrirat et al. [ 65 ] pro-
posed a high input impedance resistorless realization of electronically tunable VM
single input five outputs (SIFO) type universal filter configuration using three
DDCC transconductance amplifiers (DDCCTAs) and two grounded capacitors.
The circuit offers the realization of all the standard filter functions simulta-
neously without any component matching condition. An ideal DDCCTA can be
characterized by the following hybrid matrix:
2
4
3
5
2
4
3
5
2
4
3
5
i y 1
i y 2
i y 3
v x
i z
i 0
000000
000000
000000
1
v y 1
v y 2
v y 3
i x
v z
v 0
¼
ð
:
Þ
12
88
11000
000100
0000 g m
0
where g m is the transconductance of the DDCCTA. A routine circuit analysis of
Fig. 12.23 yields the following VM transfer functions:
 
Search WWH ::




Custom Search