Hardware Reference
In-Depth Information
145. Senani R (1987) Generation of new two-amplifier synthetic floating inductors. Electron Lett
23:1202-1203
146. Senani R (1987) A novel application of
four
terminal floating nullors. Proc IEEE
75:1544-1546
147. Prestcott AJ (1966) Loss compensated active gyrator using differential input operational
amplifiers. Electron Lett 2:283-284
148. Ford RL, Girling FEJ (1966) Active filters and oscillators using simulated inductance.
Electron Lett 2:52
149. Cabeza R, Carlosena A, Serrano L (1994) Unified approach to the implementations of
universal active devices. Electron Lett 30:618-620
150. Pal K (1981) Novel floating inductance using current conveyors. Electron Lett 17:638
151. Horng JW (2012) General high-order grounded and floating immittance structures using
current conveyors. Analog Integr Circ Sig Process 71:265-274
152. Cabeza R, Carlosena A (1997) Analog universal active device: theory, design and applica-
tions. Analog Integ Circ Sig Process 12:153-168
153. Yuce E (2008) Negative impedance converter with reduced nonideal gain and parasitic
impedance effects. IEEE Trans Circ Syst 55:276-283
154. Patranabis D, Ghosh DK (1984) Integrators and differentiators with current conveyor. IEEE
Trans Circ Syst 31:567-569
155. Moreira JP, Silva MM (2001) Limits to the dynamic range of low-power continuous-time
integrators. IEEE Trans Circ Syst 48:805-817
156. Abuelma
atti MT (1994) On the realization of current-mode integrator using current con-
veyors. Active Passive Elec Comp 17:79-82
157. Nandi R, Ray SB (1993) Precise realisation of current mode integrators using current
conveyor. Electron Lett 29:1152-1153
158. Liu S-I, Kuo J-H, Tsao H-W, Wu J, Tsay J-H (1991) New CCII-based differentiator and its
applications. Int J Electron 71:645-652
159. Liu S-I, Hwang Y-S (1994) Dual-input differentiators and integrators with tunable time
constants using current conveyors. IEEE Trans Instrum Meas 43:650-654
160. Bruun E (1992) High speed, current conveyor based voltage mode operational amplifier.
Electron Lett 28:742-744
161. Gift SJ, Maundy B, Muddeen F (2007) High-performance current-mode instrumentation
amplifier circuit. Int J Electron 94:1015-1024
162. Wilson B (1988) Constant bandwidth voltage amplification using current conveyors. Int J
Electron 65:983-988
163. Deprettere E (1975) On the minimal realisation of the gyrator by means of nullors and
resistors I. Int J Circ Theor 3:383-390
164. Deprettere E (1976) On the minimal realisation of the gyrator by means of nullors and
resistors II. Int J Circ Theor 4:285-297
165. Senani R, Bhaskar DR (1994) Versatile voltage-controlled impedance configuration. IEE
Proc Circ Devices Syst 141:414-416
166. Hou CL, Wang WY (1998) Realization of floating immittance function simulators using CCII
+. Microelectron J 29:59-63
167. Berndt DF, Dutta Roy SC (1969) Inductor simulation using a single unity gain amplifier.
IEEE J Solid State Circuits 6:161-162
168. Daniels RW (1969) Gyrators, negative impedance converters and related circuits. IEEE Trans
Circ Theor 16:261-262
169. Senani R, Bhaskar DR (2008) Comment on Practical voltage/current-controlled grounded
resistor with dynamic range extension. IEE Proc 2:465-466
170. Senani R, Bhaskar DR (1991) Realization of voltage-controlled impedances. IEEE Trans
Circ Syst 38:1081-1086; also see ibid, 1991;39:162
171. Senani R, Bhaskar DR (1992) A simple configuration for realizing voltage-controlled imped-
ances. IEEE Trans Circ Syst 39:52-59
'
Search WWH ::




Custom Search