Global Positioning System Reference
In-Depth Information
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
2.3.5.2 Reparameterization Often the geodetic latitude, longitude, and height
are preferred as parameters instead of the Cartesian components of (x). One reason
for such a reparameterization is that humans can visualize changes more readily in
latitude, longitude, and height than changes in geocentric coordinates. The required
transformation is given by (B.16).
+
λ
+
λ
λ
(M
h) cos
sin ϕ
(N
h) cos ϕ sin
cos ϕ cos
d
d x
=
+
λ
+
λ
λ
dh
(M
h) sin
sin ϕ(N
h) cos ϕ cos
cos ϕ sin
(M
+
h) cos ϕ
0
sin ϕ
d
=
J
dh
(2.106)
[48
Th e expressions for the radius of curvatures M and N are given in (B.7) and (B.6).
The matrix J must be evaluated for the geodetic latitude and longitude of the point
under consideration; thus, J 1 1 ,
Lin
6.1
——
Sho
PgE
λ 2 ,h 2 ) denote the transformation
matrices for points P 1 and P 2 , respectively. Substituting (2.106) into (2.105), we
obtain the parameterization in terms of geodetic latitude, longitude, and height:
λ 1 ,h 1 ) and J 2 2 ,
1
d
λ 1
dh 1
···
2
d
d
α 1
[48
=
d
β 1
ds
[ G 1 J 1
:
G 2 J 2 ]
(2.107)
λ 2
dh 2
To achieve a parameterization that is even easier to interpret, we transform the
differential changes in geodetic latitude and longitude parameters (dϕ, d
) into cor-
responding changes (dn, de) in the local geodetic horizon. Keeping the geometric
interpretation of the radii of curvatures M and N as detailed in Appendix B one can
fu rther deduce that
λ
=
M
+
h
0
0
d
d
d w
=
0
(N
+
h) cos ϕ
0
dh
H (ϕ, h)
dh
(2.108)
0
0
1
[ dn de du ] T intuitively related to the “horizontal” and
“vertical” and because the units are in length, the standard deviations of the param-
eters can be readily visualized. The matrix H is evaluated for the station under con-
=
The components d w
 
Search WWH ::




Custom Search