Global Positioning System Reference
In-Depth Information
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
β 1 = β
(x 1 ,y 1 ,z 1 ,x 2 ,y 2 ,z 2 )
(2.103)
s
=
s (x 1 ,y 1 ,z 1 ,x 2 ,y 2 ,z 2 )
(2.104)
Th e observables and parameters are
, respec-
tiv ely. To find the elements of the design matrix, we require the total partial derivatives
wi th respect to the parameters. The general form is
1 ,
β 1 ,s
}
and
{
x 1 ,y 1 ,z 1 ,x 2 ,y 2 ,z 2 }
dx 1
dy 1
dz 1
···
dx 2
dy 2
dz 2
d
α 1
g 11
g 12
g 13
g 14
g 15
g 16
d x 1
···
d x 2
=
β 1
ds
=
[ G 1 : G 2 ]
d
g 21
g 22
g 23
:
g 24
g 25
g 26
g 31
g 32
g 33
g 34
g 35
g 36
[47
(2.105)
Lin
0.3
——
No
*PgE
[ dx i dy i dz i ] T . The partial derivatives are listed in Table 2.4. This
particular form of the partial derivatives follows from those of Wolf (1963), after
some additional algebraic manipulations.
with d x i
=
TABLE 2.4
Partial Derivatives with Respect to Cartesian Coordinates
α 1
∂x 1 =−
sin ϕ 1 cos
λ 1 sin
α 1 +
sin
λ 1 cos
α 1
[47
g 11 =
g 14 =
(a)
s cos β 1
α 1
∂y 1 =−
sin ϕ 1 sin λ 1 sin α 1 cos λ 1 cos α 1
s cos β 1
g 12 =
g 15 =
(b)
α 1
∂z 1 =−
cos ϕ 1 sin α 1
s cos β 1
g 13 =
g 16 =
(c)
β 1
∂x 1 =− g 24 =
s cos ϕ 1 cos λ 1 + sin β 1 x
s 2 cos β 1
g 21 =
(d)
β 1
∂y 1 =− g 25 =
s cos ϕ 1 sin λ 1 + sin β 1
x
g 22 =
(e)
s 2 cos
β 1
β 1
∂z 1 =− g 26 =
s sin ϕ 1 + sin β 1
z
g 23 =
(f)
s 2 cos
β 1
∂s
∂x 1 =−
−∆
x
g 31 =
g 34 =
(g)
s
∂s
∂y 1 =−
−∆
y
g 32 =
g 35 =
(h)
s
∂s
∂z 1 =− g 36 =
−∆
z
g 33 =
(i)
s
 
Search WWH ::




Custom Search