Global Positioning System Reference
In-Depth Information
P 1 ϕ 1 , 0 ,
λ 1 , 0 ,x 1 , 0 ,y 1 , 0 ,P 2 ϕ 2 , 0 ,
λ 2 , 0 ,x 2 , 0 ,y 2 , 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
s 12 , 0 ,
t 12 , 0
γ 1 , 0 , d 12 , 0 ,
¯
α 12 , 0 ,
/
1
,
-
α 12 , 0 − γ 1 , 0
t 12 , 0 =
t 12 , 0
2
.
s 12 , 0
s 12 , 0 =
d 12 , 0
Figure 9.12
Reducing observations for plane network adjustments.
¯
α 12 ,b
=
− γ 1 , 0 − ∆
t 12 ,b
t 12 , 0
(9.23)
[33
δ 213 ,b − ∆
δ 213 ,b =
t 13 , 0 + ∆
t 12 , 0
(9.24)
Lin
- ——
Lon
PgE
d 12 ,b =
s 12 ,b − ∆
s 12 , 0
(9.25)
The observation equations are
dx 2 + ¯
t 12 ,b (9.26)
sin ¯
cos ¯
sin ¯
cos ¯
t 12 , 0
d 12 , 0
t 12 , 0
d 12 , 0
t 12 , 0
d 12 , 0
t 12 , 0
d 12 , 0
t 12 , 0 ¯
v t =
dy 1
dx 1
dy 2 +
sin t 13 , 0
d 13 , 0
dy 1
cos t 13 , 0
d 13 , 0
dx 1 +
sin t 12 , 0
d 12 , 0
cos t 12 , 0
d 12 , 0
sin t 12 , 0
d 12 , 0
[33
v δ =
dy 2
(9.27)
cos t 12 , 0
d 12 , 0
sin t 13 , 0
d 13 , 0
cos t 13 , 0
d 13 , 0
dx 3 + t 13 , 0 t 13 ,b
dx 2
dy 3 +
sin t 12 , 0 dx 2 + t 12 , 0 t 12 ,b
(9.28)
cos t 12 , 0 dy 1
sin t 12 , 0 dx 1 +
cos t 12 , 0 dy 2 +
v d =−
The scheme in Figure 9.12 suggests that the reduction elements
s be com-
puted from the approximate coordinates and that the GML functions be used to com-
pute the geodesic azimuth. The use of the GML type of functions can be avoided if
explicit functions for
t and
t and
s are available.
9.2.5 The
t and
s Functions
Th e literature contains functions that relate
t and
s explicitly to the geodetic
lat itude and longitude or mapping coordinates, i.e.,
t
=
t geod 1 ,
λ 2 1 ,
λ 2 )
=
t map (x 1 ,y 2 ,x 1 ,y 2 )
(9.29)
s
=
s geod 1 ,
λ 2 1 ,
λ 2 )
=
s map (x 1 ,y 2 ,x 1 ,y 2 )
(9.30)
 
Search WWH ::




Custom Search