Global Positioning System Reference
In-Depth Information
1
2
φ
v 1 =
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
B 1
P 1 v 1
k 1 =
o
(4.93)
φ
v 2 =
1
2
B 2 k 2 =
P 2 v 2
o
(4.94)
1
2
φ
x =−
A 1
A 2
k 1
k 2 =
o
(4.95)
1
2
φ
k 1 =
B 1 v 1 +
A 1 x
+
w 1 =
o
(4.96)
1
2
φ
k 2 =
B 2 v 2 +
A 2 x
+
w 2 =
o
(4.97)
[11
an d solving for v 1 , v 2 , k 1 , k 2 and x . Equations (4.93) and (4.94) give the residuals
Lin
7.3
——
No
*PgE
P 1
1
B 1 k 1
v 1 =
(4.98)
P 1
2
B 2
v 2 =
k 2
(4.99)
Combining (4.98) and (4.96) yields
M 1 k 1 +
A 1 x
+
w 1 =
o
(4.100)
[11
where
B 1 P 1
B 1
M 1 =
(4.101)
1
is an r 1 ×
r 1 symmetric matrix. The Lagrange multiplier becomes
M 1
1
M 1
1
k 1 =−
A 1 x
w 1
(4.102)
Eq uations (4.95) and (4.97) become, after combination with (4.102) and (4.99),
A 1 M 1
A 1 M 1
A 2 k 2 =
A 1 x
+
w 1
o
(4.103)
1
1
B 2 P 1
B 2 k 2 +
A 2 x
+
w 2 =
o
(4.104)
2
By using
B 2 P 1
B 2
M 2 =
(4.105)
2
we can write both Equations (4.103) and (4.104) in matrix form:
 
Search WWH ::




Custom Search