Biomedical Engineering Reference
In-Depth Information
33. Kerkhoff, H. G. and H. P. A. Hendriks, Fault modeling and fault simulation in
mixed micro-fluidic microelectronic systems, Journal of Electronic Testing Theory
and Applications , vol. 17, pp. 427-437, 2001.
34. Su, F., S. Ozev, and K. Chakrabarty, Test planning and test resource optimization
for droplet-based microfluidic systems, Journal of Electronic Testing: Theory and
Applications , vol. 22, pp. 199-210, 2006.
35. Schulte, T. H., R. L. Bardell, and B. H. Weigl, Microfluidic technologies in clinical
diagnostics, Clinica Chimica Acta , vol. 321, pp. 1-10, 2002.
36. Su, F., W. Hwang, A. Mukherjee, and K. Chakrabarty, Testing and diagnosis
of realistic defects in digital microfluidic biochips, Journal of Electronic Testing:
Theory and Applications , vol. 23, pp. 219-233, 2007.
37. Hwang, W., F. Su, and K. Chakrabarty, Automated design of pin-constrained
digital microfluidic arrays for lab-on-a-chip applications, Proceeding of IEEE/ACM
Design Automation Conference , pp. 925-930, 2006.
38. Srinivasan, V., V. K. Pamula, and R. B. Fair, An integrated digital microfluidic
lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a
Chip , vol. 4, pp. 310-315, 2004.
39. Fan, S.-K., C. Hashi, and C.-J. Kim, Manipulation of multiple droplets on N Ă— M
grid by cross-reference EWOD driving scheme and pressure-contact packaging,
Proceeding of IEEE MEMS Conference , pp. 694-697, 2003.
40. Kendrew, J. C., G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and
D. C. Phillips, A three-dimensional model of the myoglobin molecule obtained
by x-ray analysis, Nature , vol. 181, pp. 662-666, 1958.
41. McPherson, A., Crystallization of macromolecules—general principles, Methods
in Enzymology A , vol. 114, pp. 112-120, 1985.
42. Chayen, N. E., P. D. Shaw Stewart, D. L. Maeder, and D. M. Blow, An automated
system for micro-batch protein crystallization and screening, Journal of Applied
Crystallography , vol. 23, pp. 297-302, 1990.
43. Luft, J. R., D. M. Rak, and G. T. DeTitta, Microbatch macromolecular crystalliza-
tion in micropipettes, Journal of Crystal Growth , vol. 196, pp. 450-455, 1999.
44. http://www.douglas.co.uk/oryx8.htm .
45. http://www.gilson.com/Applications/autoLiquidHandling.asp .
46. http://www.syrrx.com .
47. Stevens, R. C., High-throughput protein crystallization, Current Opinion in
Structural Biology , vol. 10, pp. 558-563, 2000.
48. Krupka, H. I., B. Rupp, B. W. Segelke, T. P. Lekin, D. Wright, H. C. Wu,
P. Todd, and A. Azarani, The high-speed Hydra-Plus-One system for auto-
mated high-throughput protein crystallography, Acta Crystallographica , vol. 58,
pp. 1523-1526, 2002.
49. Paik, P. Y., V. K. Pamula, M. G. Pollack, and R. B. Fair, Rapid droplet mixers for
digital microfluidic systems, Lab on a Chip , vol. 3, pp. 253-259, 2003. (for general
reference; not cited in text.)
50. Xu, T. and K. Chakrabarty, Integrated droplet routing and defect tolerance in the
synthesis of digital microfluidic biochips, ACM Journal on Emerging Technologies
in Computing Systems , vol. 4, no. 3, article 11, 2008.
51. Xu, T., K. Chakrabarty, and F. Su, Defect-aware synthesis of droplet-based
microfluidic biochips, Proceeding of IEEE International Conference on VLSI Design ,
pp. 647-652, 2007.
Search WWH ::




Custom Search