Biomedical Engineering Reference
In-Depth Information
microcontroller memory. Each reexecution subroutine corresponds to a frag-
ment of the program that can be identified by the starting addresses of these
subprograms in memory. If an error is detected at a certain checkpoint, the
microcontroller intercepts the program for the bioassay and points the pro-
gram counter to the starting address of the corresponding subprogram. In this
way, control-flow feedback is implemented based on an interrupt-handling
mechanism implemented in the software.
References
1. Schulte, T. H., R. L. Bardell, and B. H. Weigl, Microfluidic technologies in clinical
diagnostics, Clinica Chimica Acta , vol. 321, pp. 1-10, 2002.
2. Srinvasan, V., V. K. Pamula, M. G. Pollack, and R. B. Fair, Clinical diagnostics on
human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital
microfluidic platform, Proceeding of Miniaturized Systems for Chemistry and Life
Sciences (μTAS) , pp. 1287-1290, 2003.
3. Guiseppi-Elie, A., S. Brahim, G. Slaughter, and K. R. Ward, Design of a subcuta-
neous implantable biochip for monitoring of glucose and lactate, IEEE Sensors
Journal , vol. 5, no. 3, pp. 345-355, 2005.
4. Verpoorte, E. and N. F. De Rooij, Microfluidics meets MEMS, Proceeding of IEEE ,
vol. 91, pp. 930-953, 2003.
5. Schasfoort, R. B. M., S. Schlautmann, J. Hendrikse, and A. van den Berg,
Field-effect flow control for microfabricated fluidic networks, Science , vol. 286,
pp. 942-945, 1999.
6. Fluidigm Corporation, http://www.fluidigm.com. .
7. Caliper Life Science, http://www.caliperls.com .
8. Tecan Systems Inc, http://www.tecan.com .
9. Fair, R. B., V. Srinivasan, H. Ren, P. Paik, V. K. Pamula, and M. G. Pollack,
Electrowetting-based on-chip sample processing for integrated microfluidics,
Proceeding of IEEE International Electron Devices Meeting (IEDM) , pp. 32.5.1-32.5.4,
2003.
10. Pollack, M. G., R. B. Fair, and A. D. Shenderov, Electrowetting-based actuation
of liquid droplets for microfluidic applications, Applied Physics Letters , vol. 77,
no. 11, 2000.
11. Cho, S. K., H. Moon, and C.-J. Kim, Creating, transporting, cutting, and merg-
ing liquid droplets by electrowetting-based actuation for digital microfluidic
circuits, Journal of Microelectromechanical Systems , vol. 12, no. 1, pp. 70-80, 2003.
12. Abdelgawad, M. and A. R. Wheeler, Rapid prototyping in copper substrates for
digital microfluidics, Advanced Material , vol. 19, pp. 133-137, 2007.
13. Fair, R. B., A. Khlystov, T. D. Tailor, V. Ivanov, R. D. Evans, P. B. Griffin,
V. Srinivasan, V. K. Pamula, M. G. Pollack, and J. Zhou, Chemical and biologi-
cal applications of digital-microfluidic devices, IEEE Design & Test of Computers ,
vol. 24, pp. 10-24, 2007.
 
Search WWH ::




Custom Search