Biomedical Engineering Reference
In-Depth Information
64. Xu, T. and K. Chakrabarty, Broadcast electrode-addressing for pin-constrained
multi-functional digital microfluidic biochips, Proceeding of IEEE/ACM Design
Automation Conference , pp. 173-178, 2008.
65. Xu, T. and K. Chakrabarty, Parallel scan-like test and multiple-defect diagno-
sis for digital microfluidic biochips, IEEE Transactions on Biomedical Circuits and
Systems , vol. 1, pp. 148-158, 2007.
66. Xu, T. and K. Chakrabarty, Functional testing of digital microfluidic biochips,
Proceeding of IEEE International Test Conference , 2007.
67. Pollack, M. G., Electrowetting-Based Microactuation of Droplets for Digital
Microfluidics, Ph.D thesis, Duke University, NC, 2001.
68. SiliconBiosystems, http://www.siliconbiosystems.com/applications/webwork/
DEPArray.page .
69. Xu, T., K. Chakrabarty, and V. K. Pamula, Design and optimization of a digi-
tal microfluidic biochip for protein crystallization, Proceeding of IEEE/ACM
International Conference on Computer-Aided Design , 2008. (for general reference;
not cited in text.)
70. Xu, T., V. K. Pamula, and K. Chakrabarty, Automated, accurate and inexpen-
sive solution-preparation on a digital microfluidic biochip, Proceeding of IEEE
International Conference on Biomedical Circuits and Systems , 2008.
71. Moreno, A., E. Saridakis, and N. E. Chayen, Combination of oils and gels for
enhancing the growth of protein crystals, Journal of Applied Crystallography ,
vol. 35, pp. 140-142, 2002.
72. http://www.pcbdesign.org/pcb-layout/understanding-pcb-layers .
73. Bach, E. and J. Shallit, Algorithmic Number Theory: Efficient Algorithms, Cambridge,
MA: MIT Press, 1996.
74. Scheid, F. J., Schaum's Outline of Theory and Problems of Numerical Analysis, New
York: McGraw-Hill, 1968.
 
Search WWH ::




Custom Search