Biomedical Engineering Reference
In-Depth Information
26. Böhringer, K. F., Modeling and controlling parallel tasks in droplet-based micro-
luidic systems, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems , vol. 25, pp. 329-339, 2006.
27. Su, F., W. L. Hwang, and K. Chakrabarty, Droplet routing in the synthesis of
digital microfluidic biochips, Proceeding of IEEE Design, Automation and Test in
Europe (DATE) Conference , pp. 323-328, 2006.
28. Su, F., S. Ozev, and K. Chakrabarty, Testing of droplet-based microelectrofluidic
systems, Proceeding of IEEE International Test Conference , pp. 1192-1200, 2003.
29. Su, F., S. Ozev, and K. Chakrabarty, Ensuring the operational health of droplet-
based microelectrofluidic biosensor systems, IEEE Sensors Journal , vol. 5,
pp. 763-773, 2005.
30. Kerkhoff, H. G. and M. Acar, Testable design and testing of micro-electro-fluidic
arrays, Proceeding of IEEE VLSI Test Symposium , pp. 403-409, 2003.
31. Dhayni, A., S. Mir, L. Rufer, and A. Bounceur, Pseudorandom functional BIST
for linear and nonlinear MEMS, Proceeding of IEEE Design, Automation and Test in
Europe (DATE) Conference , pp. 664-669, 2006.
32. Kerkhoff, H. G., Testing of microelectronic-biofluidic systems, IEEE Design &
Test of Computers , vol. 24, pp. 78-84, 2007.
33. Kerkhoff, H. G. and H. P. A. Hendriks, Fault modeling and fault simulation in
mixed micro-fluidic microelectronic systems, Journal of Electronic Testing Theory
and Applications , vol. 17, pp. 427-437, 2001.
34. Su, F., S. Ozev, and K. Chakrabarty, Test planning and test resource optimization
for droplet-based microfluidic systems, Journal of Electronic Testing: Theory and
Applications , vol. 22, pp. 199-210, 2006.
35. Schulte, T. H., R. L. Bardell, and B. H. Weigl, Microfluidic technologies in clinical
diagnostics, Clinica Chimica Acta , vol. 321, pp. 1-10, 2002.
36. Su, F., W. Hwang, A. Mukherjee, and K. Chakrabarty, Testing and diagnosis
of realistic defects in digital microfluidic biochips, Journal of Electronic Testing:
Theory and Applications , vol. 23, pp. 219-233, 2007.
37. Hwang, W., F. Su, and K. Chakrabarty, Automated design of pin-constrained
digital microfluidic arrays for lab-on-a-chip applications, Proceeding of IEEE/
ACM Design Automation Conference , pp. 925-930, 2006.
38. Srinivasan, V., V. K. Pamula, and R. B. Fair, An integrated digital microfluidic
lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a
Chip , vol. 4, pp. 310-315, 2004.
39. Fan, S.-K., C. Hashi, and C.-J. Kim, Manipulation of multiple droplets on N × M
grid by cross-reference EWOD driving scheme and pressure-contact packaging,
Proceeding of IEEE MEMS Conference , pp. 694-697, 2003.
40. Kendrew, J. C., G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and
D. C. Phillips, A three-dimensional model of the myoglobin molecule obtained
by x-ray analysis, Nature , vol. 181, pp. 662-666, 1958.
41. McPherson, A., Crystallization of macromolecules—general principles, Methods
in Enzymology A , vol. 114, pp. 112-120, 1985.
42. Chayen, N. E., P. D. Shaw Stewart, D. L. Maeder, and D. M. Blow, An automated
system for micro-batch protein crystallization and screening, Journal of Applied
Crystallography , vol. 23, pp. 297-302, 1990.
43. Luft, J. R., D. M. Rak, and G. T. DeTitta, Microbatch macromolecular crystalliza-
tion in micropipettes, Journal of Crystal Growth , vol. 196, pp. 450-455, 1999.
44. http://www.douglas.co.uk/oryx8.htm .
Search WWH ::




Custom Search