Biomedical Engineering Reference
In-Depth Information
5.4 Chapter Summary and Conclusions
In this chapter, we have introduced the concept of design-for-testability for
microfluidic biochips. We have presented a test-aware design methodology
that allows the design of a pin-constrained biochip with 100% testability.
An Euler-path-based functional test method, which extends the applica-
tion of the functional test on irregular chip layouts, has also been presented.
The presented functional test method and the test-aware method have been
evaluated by applying them to design and test biochips for a multiplexed
bioassay and a PCR procedure. These DFT techniques form a bridge between
biochip design and testing. They not only allow the design of easy-to-test
biochip platforms but also broaden the application of the recently proposed
test methods to cover more generic chip layouts.
References
1. Schulte, T. H., R. L. Bardell, and B. H. Weigl, Microfluidic technologies in clinical
diagnostics, Clinica Chimica Acta , vol. 321, pp. 1-10, 2002.
2. Srinvasan, V., V. K. Pamula, M. G. Pollack, and R. B. Fair, Clinical diagnostics on
human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital
microfluidic platform, Proceeding of Miniaturized Systems for Chemistry and Life
Sciences (μTAS) , pp. 1287-1290, 2003.
3. Guiseppi-Elie, A., S. Brahim, G. Slaughter, and K. R. Ward, Design of a subcuta-
neous implantable biochip for monitoring of glucose and lactate, IEEE Sensors
Journal , vol. 5, no. 3, pp. 345-355, 2005.
4. Verpoorte, E. and N. F. De Rooij, Microfluidics meets MEMS, Proceeding of IEEE ,
vol. 91, pp. 930-953, 2003.
5. Schasfoort, R. B. M., S. Schlautmann, J. Hendrikse, and A. van den Berg,
Field-effect flow control for microfabricated fluidic networks, Science , vol. 286,
pp. 942-945, 1999.
6. Fluidigm Corporation, http://www.fluidigm.com. .
7. Caliper Life Science, http://www.caliperls.com .
8. Tecan Systems Inc, http://www.tecan.com .
9. Fair, R. B., V. Srinivasan, H. Ren, P. Paik, V. K. Pamula, and M. G. Pollack,
Electrowetting-based on-chip sample processing for integrated microfluidics,
Proceeding of IEEE International Electron Devices Meeting (IEDM) , pp. 32.5.1-32.5.4,
2003.
10. Pollack, M. G., R. B. Fair, and A. D. Shenderov, Electrowetting-based actuation
of liquid droplets for microfluidic applications, Applied Physics Letters , vol. 77,
no. 11, 2000.
11. Cho, S. K., H. Moon, and C.-J. Kim, Creating, transporting, cutting, and merg-
ing liquid droplets by electrowetting-based actuation for digital microfluidic
circuits, Journal of Microelectromechanical Systems , vol. 12, no. 1, pp. 70-80, 2003.
 
Search WWH ::




Custom Search