Biomedical Engineering Reference
In-Depth Information
38. Srinivasan, V., V. K. Pamula, and R. B. Fair, An integrated digital microfluidic
lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a
Chip , vol. 4, pp. 310-315, 2004.
39. Fan, S.-K., C. Hashi, and C.-J. Kim, Manipulation of multiple droplets on N Ă— M
grid by cross-reference EWOD driving scheme and pressure-contact packaging,
Proceeding of IEEE MEMS Conference , pp. 694-697, 2003.
40. Kendrew, J. C., G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and
D. C. Phillips, A three-dimensional model of the myoglobin molecule obtained
by x-ray analysis, Nature , vol. 181, pp. 662-666, 1958.
41. McPherson, A., Crystallization of macromolecules—general principles, Methods
in Enzymology A , vol. 114, pp. 112-120, 1985.
42. Chayen, N. E., P. D. Shaw Stewart, D. L. Maeder, and D. M. Blow, An automated
system for micro-batch protein crystallization and screening, Journal of Applied
Crystallography , vol. 23, pp. 297-302, 1990.
43. Luft, J. R., D. M. Rak, and G. T. DeTitta, Microbatch macromolecular crystalliza-
tion in micropipettes, Journal of Crystal Growth , vol. 196, pp. 450-455, 1999.
44. http://www.douglas.co.uk/oryx8.htm .
45. http://www.gilson.com/Applications/autoLiquidHandling.asp .
46. http://www.syrrx.com .
47. Stevens, R. C., High-throughput protein crystallization, Current Opinion in
Structural Biology , vol. 10, pp. 558-563, 2000.
48. Krupka, H. I., B. Rupp, B. W. Segelke, T. P. Lekin, D. Wright, H. C. Wu, P. Todd,
and A. Azarani, The high-speed Hydra-Plus-One system for automated high-
throughput protein crystallography, Acta Crystallographica , vol. 58, pp. 1523-1526,
2002.
49. Paik, P. Y., V. K. Pamula, M. G. Pollack, and R. B. Fair, Rapid droplet mixers for
digital microfluidic systems, Lab on a Chip , vol. 3, pp. 253-259, 2003 (for general
reference; not cited in text.)
50. Xu, T. and K. Chakrabarty, Integrated droplet routing and defect tolerance in the
synthesis of digital microfluidic biochips, ACM Journal on Emerging Technologies
in Computing Systems , vol. 4, no. 3, article 11, 2008.
51. Xu, T., K. Chakrabarty, and F. Su, Defect-aware synthesis of droplet-based
microfluidic biochips, Proceeding of IEEE International Conference on VLSI Design ,
pp. 647-652, 2007.
52. Su, F. and K. Chakrabarty, Module placement for fault-tolerant microfluidics-
based biochips, ACM Transactions on Design Automation of Electronic Systems ,
vol. 11, pp. 682-710, 2006.
53. Xu, T. and K. Chakrabarty, Parallel scan-like test and multiple-defect diagno-
sis for digital microfluidic biochips, IEEE Transactions on Biomedical Circuits and
Systems , vol. 1, pp. 148-158, June 2007.
54. Xu, T. and K. Chakrabarty, Integrated droplet routing and defect tolerance in the
synthesis of digital microfluidic biochips, ACM Journal on Emerging Technologies
in Computing Systems , vol. 4, no. 3, article 11, August 2008.
55. Xu, T., W. Hwang, F. Su, and K. Chakrabarty, Automated design of pin-constrained
digital microfluidic biochips under droplet-interference constraints, ACM Journal
on Emerging Technologies in Computing Systems , vol. 3, article 14, 2007.
56. Diestel, R., Graph Theory , Berlin: Springer, 2005.
57. Papadimitriou, C. H., Computational Complexity , Reading, MA: Addison Wesley,
1993.
Search WWH ::




Custom Search