Biomedical Engineering Reference
In-Depth Information
power consumption. We have used random synthetic benchmarks and a set
of multiplexed bioassays to evaluate the proposed method.
Finally, we have described a broadcast-based electrode-addressing method
for pin-constrained digital microfluidic biochips. We have shown how com-
patible electrodes are identified and connected. This procedure leads to a
considerable reduction in the number of control pins. We have used the pro-
posed method to solve the electrode-addressing problem for a multifunctional
biochip and achieved a significant reduction in the input-control bandwidth
required for a set of bioassays. These pin-constrained design methods will
allow bioassays for high-throughput sequencing, immunoassays, and clini-
cal diagnostics to be mapped to pin-constrained and low-cost biochips, and
simplify the design and implementation of such biochips.
References
1. Schulte, T. H., R. L. Bardell, and B. H. Weigl, Microfluidic technologies in clinical
diagnostics, Clinica Chimica Acta , vol. 321, pp. 1-10, 2002.
2. Srinvasan, V., V. K. Pamula, M. G. Pollack, and R. B. Fair, Clinical diagnostics on
human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital
microfluidic platform, Proceeding of Miniaturized Systems for Chemistry and Life
Sciences (μTAS) , pp. 1287-1290, 2003.
3. Guiseppi-Elie, A., S. Brahim, G. Slaughter, and K. R. Ward, Design of a subcuta-
neous implantable biochip for monitoring of glucose and lactate, IEEE Sensors
Journal , vol. 5, no. 3, pp. 345-355, 2005.
4. Verpoorte, E. and N. F. De Rooij, Microfluidics meets MEMS, Proceeding of IEEE ,
vol. 91, pp. 930-953, 2003.
5. Schasfoort, R. B. M., S. Schlautmann, J. Hendrikse, and A. van den Berg,
Field-effect flow control for microfabricated fluidic networks, Science , vol. 286,
pp. 942-945, 1999.
6. Fluidigm Corporation, http://www.fluidigm.com. .
7. Caliper Life Science, http://www.caliperls.com .
8. Tecan Systems Inc, http://www.tecan.com .
9. Fair, R. B., V. Srinivasan, H. Ren, P. Paik, V. K. Pamula, and M. G. Pollack,
Electrowetting-based on-chip sample processing for integrated microfluidics,
Proceeding of IEEE International Electron Devices Meeting (IEDM) , pp. 32.5.1-32.5.4,
2003.
10. Pollack, M. G., R. B. Fair, and A. D. Shenderov, Electrowetting-based actuation
of liquid droplets for microfluidic applications, Applied Physics Letters , vol. 77,
no. 11, 2000.
11. Cho, S. K., H. Moon, and C.-J. Kim, Creating, transporting, cutting, and merg-
ing liquid droplets by electrowetting-based actuation for digital microfluidic
circuits, Journal of Microelectromechanical Systems , vol. 12, no. 1, pp. 70-80, 2003.
12. Abdelgawad, M. and A. R. Wheeler, Rapid prototyping in copper substrates for
digital microfluidics, Advanced Material , vol. 19, pp. 133-137, 2007.
 
Search WWH ::




Custom Search