Cryptography Reference
In-Depth Information
i
0
1
2
3
4
5
6
7
8
9
19903 i mod p
1
24783
15001
94125
114711
28838
114917
108096
63848
21941
i
10
11
12
13
14
15
16
17
18
19903 i mod p
71926
56972
122440
84521
81773
80931
71711
5969
38500
We sort this table into
(1
11)
(63848 , 8) (71711 , 16) (71926 , 10) (80931 , 15) (81773 , 14) (84521 , 13) (94125 , 3)
(108096 , 7) (114711 , 4) (114917 , 6) (122440 , 12)
,
0) (5969
,
17) (15001
,
2) (21941
,
9) (24783
,
1) (28838
,
5) (38500
,
18) (56972
,
Next we compute 101887 × 19903 j
mod p until we hit a value in this table. We compute
19903 0
101887
×
mod p
=
101887
19903 1
101887
×
mod p
=
7139
19903 2
101887
×
mod p
=
114597
19903 3
101887
×
mod p
=
28838
which is in the table, corresponding to i = 5 . So we can check that log 19903 mod p
(101887)
98 .
=
3
+
5
×
19
=
Therefore we obtain
y p 1
359
log g p 1
359
=
98
.
mod p
Finally, we obtain that log g mod p ( y ) is congruent to 1 modulo 2, to 8 modulo 5 2 ,to4
modulo 7, and to 98 modulo 359. We can now apply the Chinese Remainder Theorem.
We let
x
=
1
·
r 2 +
8
·
r 5 2
+
4
·
r 7 +
98
·
r 359 mod ( p
1)
where
p
mod q
1
p
1
1
r q =
×
q
q
and we obtain that log g mod p ( y ) = x = 23433 .
Search WWH ::




Custom Search