Cryptography Reference
In-Depth Information
21153 3
mod p
=
52301
21153 4
mod p
=
91649
Therefore
y p 7
log g p 1
7
=
4
.
mod p
y
5 2 .Wehave
p
1
Let us now compute log g p 1
5 2
mod p
p
1
p
1
6 5026
123 5026
g
mod p
=
mod p
=
45194
,
y
mod p
=
mod p
=
34726
.
5 2
5 2
We know that this logarithm is in a group of order 5 2 . We can have a first approximation
(compute the modulo 5 part) by computing log 45194 5 mod p (34726 5 ) .Wehave 45194 5
mod
55981 , so we need to compute log 10770 mod p (55981) in a
group of order 5. Since 5 is quite small, we make a logarithm table.
10770 and 34726 5
p
=
mod p
=
10770 1
mod p
=
10770
10770 2
mod p
=
17027
10770 3
mod p
=
55981
10770 4
mod p
=
41872
10770 5
mod p
=
1
.
Thus
log 10770 mod p (55981) = 3 .
Therefore
log 45194 mod p (34726) mod 5 = 3 .
owe
can
take
10770 ,
and
we
notice
that
its
logarithm
in
34726
/
45194 3
mod p
=
base
10770
is
1.
So
we
can
check
that
8 .
log 45194 mod p (34726)
=
3
+
1
×
5
=
Therefore
y
5 2
p
1
log g p 1
= 8 .
5 2
mod p
y p 1
359 .Wehave
Let us finally compute log g p 1
359
mod p
g p 1
y p 1
6 350
123 350
359 mod p
=
mod p
=
19903
,
359 mod p
=
mod p
=
101887
.
We need to compute log 19903 mo d p (1 01887) in a group of order 359. For this we need the
Shanks algorithm. Let = 359 = 19 be the “giant step.” We compute the table of
powers of 19903 mod p for powers up to 18:
 
Search WWH ::




Custom Search