Biomedical Engineering Reference
In-Depth Information
[30] Love Wg, Amos N, Williams Bd, Kellaway iW. Effect of liposome surface charge on
the stability of technetium (99mTc) radiolabelled liposomes. J microencapsul 1989; 6 :
105-113.
[31] Ahkong Qf, Tilcock C. Attachment of 99mTc to lipid vesicles containing the lipophilic
chelate dipalmitoylphosphatidylethanolamine-dTTA. int J rad Appl instrum B 1992; 19 :
831-840.
[32] Alafandy m, goffinet g, umbrain V, d'Haese J, Camu f, Legros fJ. 99mTechnetium-
stannous oxinate as marker of liposome formulations. Nucl med Biol 1996; 23 :881-887.
[33] Boerman oC, Laverman p, oyen WJ, Corstens fH, storm g. radiolabeled liposomes
for scintigraphic imaging. prog Lipid res 2000; 39 :461-475.
[34] goto r, Kubo H, okada s. Liposomes prepared from synthetic amphiphiles. i. Their
technetium labeling and stability. Chem pharm Bull (Tokyo) 1989; 37 :1351-1354.
[35] Tilcock C, unger E, Cullis p, macdougall p. Liposomal gd-dTpA: preparation and
characterization of relaxivity. radiology 1989; 171 :77-80.
[36] Tilcock C. Liposomal paramagnetic mr contrast agents. in: gregoriadis g, editor.
Liposome Technology . 2nd ed. Boca raton: CrC press; 1993. p 65-87.
[37] Kabalka gW, davis mA, Buonocore E, Hubner K, Holmberg E, Huang L. gd-labeled
liposomes containing amphipathic agents for magnetic resonance imaging. invest radiol
1990; 25 (suppl 1):s63-s64.
[38] grant CW, Karlik s, florio E. A liposomal mri contrast agent: phosphatidylethanol-
amine-dTpA. magn reson med 1989; 11 :236-243.
[39] Laverman p, dams ET, oyen WJ, storm g, Koenders EB, prevost r, van der meer JW,
Corstens fH, Boerman oC. A novel method to label liposomes with 99mTc by the
hydrazino nicotinyl derivative. J Nucl med 1999; 40 :192-197.
[40] Khaw BA, Klibanov A, o'donnell sm, saito T, Nossiff N, slinkin mA, Newell JB,
strauss HW, Torchilin Vp. gamma imaging with negatively charge-modified monoclonal
antibody: modification with synthetic polymers. J Nucl med 1991; 32 :1742-1751.
[41] slinkin mA, Klibanov AL, Torchilin Vp. Terminal-modified polylysine-based chelating
polymers: highly efficient coupling to antibody with minimal loss in immunoreactivity.
Bioconjug Chem 1991; 2 :342-348.
[42] Torchilin Vp, Klibanov AL. The antibody-linked chelating polymers for nuclear therapy
and diagnostics. Crit rev Ther drug Carrier syst 1991; 7 :275-308.
[43] Torchilin Vp. polymeric contrast agents for medical imaging. Curr pharm Biotechnol
2000; 1 :183-215.
[44] Torchilin Vp. pharmacokinetic considerations in the development of labeled liposomes
and micelles for diagnostic imaging. Q J Nucl med 1997; 41 :141-153.
[45] de Vries A, Kok mB, sanders Hm, Nicolay K, strijkers gJ, grull H. multimodal lipo-
somes for spECT/mr imaging as a tool for in situ relaxivity measurements. Contrast
media mol imaging 2012; 7 :68-75.
[46] Erdogan s, roby A, sawant r, Hurley J, Torchilin Vp. gadolinium-loaded polychelating
polymer-containing cancer cell-specific immunoliposomes. J Liposome res 2006; 16 :
45-55.
[47] Hwang KJ, merriam JE, Beaumier pL, Luk Kf. Encapsulation, with high efficiency, of
radioactive metal ions in liposomes. Biochim Biophys Acta 1982; 716 :101-109.
[48] gabizon A, Huberty J, straubinger rm, price dC, papahadjopoulos d. An improved
method for in vivo tracking and imaging of liposomes using a gallium-67-deferoxamine
complex. J Liposome res 1988; 1 :123-135.
Search WWH ::




Custom Search