Biomedical Engineering Reference
In-Depth Information
[46] nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced
Raman scattering. Science 1997; 275 :1102-1106.
[47] von Maltzahn g, centrone a, Park J-H, Ramanathan R, Sailor MJ, Hatton Ta, Bhatia
Sn. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed
near-infrared imaging and photothermal heating. adv Mater 2009; 21 :3175-3180.
[48] Yuan H, Liu Y, fales aM, Li YL, Liu J, Vo-Dinh T. Quantitative surface-enhanced reso-
nant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex
vivo detection. anal Methods 2012; 85 :208-212.
[49] Xie J, Zhang Q, Lee JY, Wang Dic. The synthesis of SERS-active gold nanoflower tags
for in vivo applications. acS nano 2008; 2 :2473-2480.
[50] Lu W, Singh aK, Khan Sa, Senapati D, Yu H, Ray Pc. gold nano-popcorn-based tar-
geted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy
response of prostate cancer cells using surface-enhanced Raman spectroscopy. J am
chem Soc 2010; 132 :18103-18114.
[51] abbas a, Kattumenu R, Tian L, nergiz SZ, Singamaneni S. Self-assembly of plasmonic
nanostructures. J nanosci Lett 2012; 2 :17.
[52] abbas a, Kattumenu R, Tian L, Singamaneni S. Molecular linker-mediated self-as-
sembly of gold nanoparticles: understanding and controlling the dynamics. Langmuir
2013; 29 :56-64.
[53] abbas a, Tian L, Kattumenu R, Halim a, Singamaneni S. freezing the self-assembly
process of gold nanocrystals. chem commun (camb) 2012; 48 :1677-1679.
[54] gandra n, Singamaneni S. “clicked” plasmonic core-satellites: covalently assembled
gold nanoparticles. chem commun (camb) 2012; 48 :11540-11542.
[55] angioletti-uberti S, Mognetti BM, frenkel D. Re-entrant melting as a design principle
for Dna-coated colloids. nat Mater 2012; 11 :518-522.
[56] Macfarlane RJ, Lee B, Jones MR, Harris n, Schatz gc, Mirkin ca. nanoparticle super-
lattice engineering with Dna. Science 2011; 334 :204-208.
[57] costi R, cohen g, Salant a, Rabani E, Banin u. Electrostatic force microscopy study of
single au-cdSe hybrid nanodumbbells: evidence for light-induced charge separation.
nano Lett 2009; 9 :2031-2039.
[58] Li WY, camargo PHc, au L, Zhang Q, Rycenga M, Xia Yn. Etching and dimerization:
a simple and versatile route to dimers of silver nanospheres with a range of sizes. angew
chem int Ed 2010; 49 :164-168.
[59] Pazos-Perez n, Wagner cS, Romo-Herrera JM, Liz-Marzán LM, garcía de abajo fJ,
Wittemann a, fery a, alvarez-Puebla Ra. organized plasmonic clusters with high
coordination number and extraordinary enhancement in surface-enhanced Raman
scattering (SERS). angew chem int Ed Engl 2012; 51 :12688-12693.
[60] Lim D-K, Jeon K-S, Hwang J-H, Kim H, Kwon S, Suh YD, nam J-M. Highly uniform
and reproducible surface-enhanced Raman scattering from Dna-tailorable nanoparticles
with 1-nm interior gap. nat nano 2011; 6 :452-460.
[61] gandra n, Singamaneni S. Bilayered Raman-intense gold nanostructures with hidden
tags (BRigHTs) for high-resolution bioimaging. adv Mater 2012. Doi: 10.1002/
adma.201203415.
[62] gandra n, Portz c, Singamaneni S. Bimetallic Janus nanostructures via programmed
shell growth. nanoscale 2013; 5 :1806-1809.
Search WWH ::




Custom Search