Biomedical Engineering Reference
In-Depth Information
[47] Zhu Q, Dehghani H, Tichauer KM, Holt rW, Vishwanath K, leblond F, Pogue BW.
A three-dimensional finite element model and image reconstruction algorithm for
time-domain fluorescence imaging in highly scattering media. Phys Med Biol
2011; 56 :7419-7434.
[48] Boas DA, oleary MA, Chance B, Yodh AG. Scattering of diffuse photon density waves
by spherical inhomogeneities within turbid media—analytic solution and applications.
Proc Natl Acad Sci U S A 1994; 91 :4887-4891.
[49] Farrell TJ, Patterson MS, Wilson B. A diffusion theory model of spatially resolved,
steady-state diffuse reflectance for the noninvasive determination of tissue optical prop-
erties in vivo . Med Phys 1992; 19 :879-888.
[50] Arridge Sr, Schweiger M, Hiraoka M, Delpy DT. A finite-element approach for mod-
eling photon transport in tissue. Med Phys 1993; 20 :299-309.
[51] Jiang HB. Frequency-domain fluorescent diffusion tomography: a finite-element-based
algorithm and simulations. Appl opt 1998; 37 :5337-5343.
[52] Dehghani H, Srinivasan S, Pogue BW, Gibson A. Numerical modelling and image recon-
struction in diffuse optical tomography. Philos Trans R Soc A-Math Phys Eng Sci
2009; 367 :3073-3093.
[53] Paulsen KD, Jiang HB. Spatially varying optical property reconstruction using a finite-
element diffusion equation approximation. Med Phys 1995; 22 :691-701.
[54] Jacques Sl, Pogue BW. Tutorial on diffuse light transport. J Biomed opt 2008; 13 :041302.
[55] Srinivasan S, Pogue BW, Carpenter C, Yalavarthy PK, Paulsen K. A boundary element
approach for image-guided near-infrared absorption and scatter estimation. Med Phys
2007; 34 :4545-4557.
[56] Arridge Sr, Schweiger M. Image reconstruction in optical tomography. Philos Trans R
Soc B-Biol Sci 1997; 352 :717-726.
[57] Wang lH, Jacques Sl, Zheng lQ. MCMl—Monte-Carlo modeling of light transport in
multilayered tissues. Comput Meth Programs Biomed 1995; 47 :131-146.
[58] Flock ST, Patterson MS, Wilson BC, Wyman Dr. Monte Carlo modeling of light propa-
gation in highly scattering tissue I: model predictions and comparison with diffusion
theory. IEEE Trans Biomed Eng 1989; 36 :1162-1168.
[59] Hillman eM, Moore A. All-optical anatomical co-registration for molecular imaging of
small animals using dynamic contrast. Nat Photon 2007; 1 :526-530.
[60] Chernomordik V, Hassan M, lee SB, Zielinski r, Gandjbakhche A, Capala J. Quantitative
analysis of Her2 receptor expression in vivo by near-infrared optical imaging. Mol
Imaging 2010; 9 :192-200.
[61] Chen YC, Clegg rM. Fluorescence lifetime-resolved imaging. Photosynth Res
2009; 102 :143-155.
[62] riley J, Hassan M, Chernomordik V, Gandjbakhche A. Choice of data types in time resolved
fluorescence enhanced diffuse optical tomography. Med Phys 2007; 34 :4890-4900.
[63] Kumar AT, raymond SB, Bacskai BJ, Boas DA. Comparison of frequency-domain and
time-domain fluorescence lifetime tomography. opt Lett 2008; 33 :470-472.
[64] Kumar AT, raymond SB, Boverman G, Boas DA, Bacskai BJ. Time resolved fluores-
cence tomography of turbid media based on lifetime contrast. opt Express 2006; 14 :
12255-12270.
[65] Han SH, Farshchi-Heydari S, Hall DJ. Analytical method for the fast time-domain recon-
struction of fluorescent inclusions in vitro and in vivo . Biophys J 2010; 98 :350-357.
Search WWH ::




Custom Search