Biomedical Engineering Reference
In-Depth Information
[11] Barton JK, Hoying JB, Sullivan CJ. use of microbubbles as an optical coherence tomog-
raphy contrast agent. Acad Radiol 2002; 9 (Suppl 1):S52-S55.
[12] van den Berg NS, van leeuwen FW, van der Poel HG. Fluorescence guidance in urologic
surgery. Curr opin Urol 2012; 22 :109-120.
[13] liu DZ, Mathes DW, Zenn Mr, Neligan PC. The application of indocyanine green fluo-
rescence angiography in plastic surgery. J Reconstr Microsurg 2011; 27 :355-364.
[14] Wagnieres GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for
oncological applications. Photochem Photobiol 1998; 68 :603-632.
[15] Zhang Q, Iwakuma N, Sharma P, Moudgil BM, Wu C, McNeill J, Jiang H, Grobmyer Sr.
Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic
tomography. Nanotechnology 2009; 20 :395102.
[16] Ku G, Wang lV. Deeply penetrating photoacoustic tomography in biological tissues
enhanced with an optical contrast agent. opt Lett 2005; 30 :507-509.
[17] Pilatou MC, Marani e, de Mul FF, Steenbergen W. Photoacoustic imaging of brain
perfusion on albino rats by using evans blue as contrast agent. Arch Physiol Biochem
2003; 111 :389-397.
[18] Bloch S, lesage F, McIntosh l, Gandjbakhche A, liang K, Achilefu S. Whole-body
fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice.
J Biomed opt 2005; 10 :054003.
[19] lee SB, Hassan M, Fisher r, Chertov o, Chernomordik V, Kramer-Marek G,
Gandjbakhche A, Capala J. Affibody molecules for in vivo characterization of Her2-
positive tumors by near-infrared imaging. Clin Cancer Res 2008; 14 :3840-3849.
[20] Berezin MY, Guo K, Akers W, Northdurft re, Culver JP, Teng B, Vasalatiy o,
Barbacow K, Gandjbakhche A, Griffiths Gl, Achilefu S. Near-infrared fluorescence
lifetime ph-sensitive probes. Biophys J 2011; 100 :2063-2072.
[21] Cui l, Zhong Y, Zhu W, Xu Y, Du Q, Wang X, Qian X, Xiao Y. A new prodrug-derived
ratiometric fluorescent probe for hypoxia: high selectivity of nitroreductase and imaging
in tumor cell. org Lett 2011; 13 :928-931.
[22] Nakata e, Yukimachi Y, Kariyazono H, Im S, Abe C, uto Y, Maezawa H, Hashimoto T,
okamoto Y, Hori H. Design of a bioreductively-activated fluorescent pH probe for tumor
hypoxia imaging. Bioorg Med Chem 2009; 17 :6952-6958.
[23] okuda K, okabe Y, Kadonosono T, ueno T, Youssif BG, Kizaka-Kondoh S, Nagasawa H.
2-nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescent probe for
in vivo imaging of tumor hypoxia. Bioconjug Chem 2012; 23 :324-329.
[24] Youssif BG, okuda K, Kadonosono T, Salem oI, Hayallah AA, Hussein MA,
Kizaka-Kondoh S, Nagasawa H. Development of a hypoxia-selective near-infrared
fluorescent probe for non-invasive tumor imaging. Chem Pharm Bull (Tokyo)
2012; 60 :402-407.
[25] Kobayashi H, ogawa M, Alford r, Choyke Pl, urano Y. New strategies for fluorescent
probe design in medical diagnostic imaging. Chem Rev 2010; 110 :2620-2640.
[26] Kosaka N, ogawa M, Sato N, Choyke Pl, Kobayashi H. In vivo real-time, multicolor,
quantum dot lymphatic imaging. J Invest Dermatol 2009; 129 :2818-2822.
[27] Andersson-engels S, Johansson J, Svanberg S. Medical diagnostic system based on
simultaneous multispectral fluorescence imaging. Appl opt 1994; 33 :8022-8029.
[28] lakowicz Jr. Principles of Fluorescence Spectroscopy . 2nd ed. New York: Kluwer
Academic/Plenum; 1999.
Search WWH ::




Custom Search