Biomedical Engineering Reference
In-Depth Information
[68] Zong Y, Wang X, Goodrich KC, Mohs AM, parker dL, Lu Z-R. Contrast-enhanced MRI
with new biodegradable macromolecular Gd(III) complexes in tumor-bearing mice.
Magn Reson Med 2005; 53 :835-842.
[69] Wen X, Jackson eF, price Re, Kim ee, Wu Q, Wallace s, Charnsangavej C, Gelovani
JG, Li C. synthesis and characterization of poly(l-glutamic acid) gadolinium chelate: a
new biodegradable mri contrast agent. Bioconjug Chem 2004; 15 :1408-1415.
[70] Karfeld-sulzer Ls, Waters eA, davis ne, Meade TJ, Barron Ae. Multivalent protein
polymer mri contrast agents: controlling relaxivity via modulation of amino acid
sequence. Biomacromolecules 2010; 11 :1429-1436.
[71] Zhu W, Artemov d. Biocompatible blood pool MRI contrast agents based on hyaluronan.
Contrast Media Mol Imaging 2011; 6 :61-68.
[72] Villaraza AJ, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials
in magnetic resonance imaging: the interplay between size, function, and pharmacoki-
netics. Chem Rev 2010; 110 :2921-2959.
[73] Buhleier e, Wehner W, Vögtle F. Cascade and nonskid-chain-like synthesis of molecular
cavity topologies. synthesis 1978; 2 :155-158.
[74] Astruc d, Boisselier e, Ornelas C. dendrimers designed for functions: from physical,
photophysical, and supramolecular properties to applications in sensing, catalysis,
molecular electronics, photonics, and nanomedicine. Chem Rev 2010; 110 :1857-1959.
[75] Wiener e, Brechbiel MW, Brothers H, Magin R, Gansow O, Tomalia d, Lauterbur p.
dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast
agents. Magn Reson Med 1994; 31 :1-8.
[76] newkome GR, Yao Z, Baker GR, Gupta VK. Micelles. part 1. Cascade molecules: a new
approach to micelles. A [27]-arborol. J Org Chem 1985; 50 :2003-2004.
[77] Tomalia d, Baker H, dewald J, Hall M, Kallos G, Martin s, Roeck J, Ryder J, smith p.
A new class of polymers: starburst-dendritic macromolecules. polym J 1985; 17 :117-132.
[78] Brabander-van den Berg de, Meijer e. poly (propylenimine) dendrimers: large-scale
synthesis via heterogeneously catalyzed hydrogenation. Angew Chem Int ed engl
1993; 32 :1308.
[79] Wörner C, Mülhaupt R. polynitrile- and polyamine-functional poly(trimethylene imine)
dendrimers. Angew Chem Int ed engl 1993; 32 :1306-1308.
[80] Hummelen JC, Van dongen JL, Meijer e. electrospray mass spectrometry of poly
(propylene imine) dendrimers—the issue of dendritic purity or polydispersity. Chem eur
J 1997; 3 :1489-1493.
[81] Hawker C, Fréchet JM. A new convergent approach to monodisperse dendritic macro-
molecules. J Chem Soc Chem Commun 1990:1010-1013.
[82] Grayson sM, Fréchet JMJ. Convergent dendrons and dendrimers: from synthesis to
applications. Chem Rev 2001; 101 :3819-3868.
[83] Bosman AW, Janssen HM, Meijer eW. About dendrimers: structure, physical properties,
and applications. Chem Rev 1999; 99 :1665-1688.
[84] Bryant LH, Brechbiel MW, Wu C, Bulte JWM, Herynek V, Frank JA. synthesis
and relaxometry of high-generation (G = 5, 7, 9, and 10) pAMAM dendrimer-dOTA-
gadolinium chelates. J Magn Reson Imaging 1999; 9 :348-352.
[85] Laus s, sour A, Ruloff R, Tóth É, Merbach Ae. Rotational dynamics account for
pH-dependent relaxivities of pAMAM dendrimeric, Gd-based potential MRI contrast
agents. Chem eur J 2005; 11 :3064-3076.
Search WWH ::




Custom Search