Biomedical Engineering Reference
In-Depth Information
[4] Chang G, Wang L, schweitzer M, Regatte R. 3d 23na MRI of human skeletal muscle at
7 Tesla: initial experience. eur Radiol 2010; 20 :2039-2046.
[5] von Knobelsdorff-Brenkenhoff F, Frauenrath T, prothmann M, dieringer M, Hezel F,
Renz W, Kretschel K, niendorf T, schulz-Menger J. Cardiac chamber quantification
using magnetic resonance imaging at 7 Tesla—a pilot study. eur Radiol 2010; 20 :
2844-2852.
[6] Blamire A. The technology of MRI—the next 10 years? Br J Radiol 2008; 81 :601-617.
[7] Caravan p, ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI con-
trast agents: structure, dynamics, and applications. Chem Rev 1999; 99 :2293-2352.
[8] Lauterbur pC, Mendonca-dias M, Rudin A. Augmentation of tissue water proton spin-
lattice relaxation rates by in vivo addition of paramagnetic ions. Front Biol energ
1978; 1 :752-759.
[9] Kellar Ke, Fossheim sL, Koenig sH. Magnetic field dependence of solvent proton relax-
ation by solute dysprosium (III) complexes. Invest Radiol 1998; 33 :835-840.
[10] ersoy H, Rybicki FJ. Biochemical safety profiles of gadolinium-based extracellular
contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 2007; 26 :
1190-1197.
[11] Bellin M-F. MR contrast agents, the old and the new. eur J Radiol 2006; 60 :314-323.
[12] Cacheris Wp, Quay sC, Rocklage sM. The relationship between thermodynamics and
the toxicity of gadolinium complexes. Magn Reson Imaging 1990; 8 :467-481.
[13] pearson RG. Hard and soft acids and bases. J Am Chem soc 1963; 85 :3533-3539.
[14] Hancock Rd. Chelate ring size and metal ion selection. The basis of selectivity for metal
ions in open-chain ligands and macrocycles. J Chem educ 1992; 69 :615.
[15] Liu s, edwards ds. Bifunctional chelators for therapeutic lanthanide radiopharmaceu-
ticals. Bioconjug Chem 2001; 12 :7-34.
[16] Merbach Ae, Tóth É. The Chemistry of Contrast Agents in Medical Magnetic Resonance
Imaging . Chichester: Wiley; 2001.
[17] Laurent s, elst LV, Muller Rn. Comparative study of the physicochemical properties of
six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol
Imaging 2006; 1 :128-137.
[18] Aime s, Caravan p. Biodistribution of gadolinium-based contrast agents, including gad-
olinium deposition. J Magn Reson Imaging 2009; 30 :1259-1267.
[19] Gianolio e, Giovenzana GB, Longo d, Longo I, Menegotto I, Aime s. Relaxometric and
modelling studies of the binding of a lipophilic Gd-AAZTA complex to fatted and defat-
ted human serum albumin. Chem eur J 2007; 13 :5785-5797.
[20] Briley-saebo KC, Geninatti-Crich s, Cormode dp, Barazza A, Mulder WJM, Chen W,
Giovenzana GB, Fisher eA, Aime s, Fayad ZA. High-relaxivity gadolinium-modified
high-density lipoproteins as magnetic resonance imaging contrast agents. J phys Chem
B 2009; 113 :6283-6289.
[21] silverio s, Torres s, Martins AF, Martins JA, Andre Jp, Helm L, prata MIM, santos AC,
Geraldes CFGC. Lanthanide chelates of (bis)-hydroxymethyl-substituted dTTA with
potential application as contrast agents in magnetic resonance imaging. dalton Trans
2009; 28 :4656-4670.
[22] datta A, Raymond Kn. Gd−hydroxypyridinone (HOpO)-based high-relaxivity magnetic
resonance imaging (MRI) contrast agents. Acc Chem Res 2009; 42 :938-947.
Search WWH ::




Custom Search