Biomedical Engineering Reference
In-Depth Information
[118] Kumari A, Yadav SK, Yadav SC. biodegradable polymeric nanoparticles based drug
delivery systems. Colloid Surf b biointerf 2010; 75 :1-18.
[119] Soppimath KS, Aminabhavi Tm, Kulkarni AR, Rudzinski We. biodegradable poly-
meric nanoparticles as drug delivery devices. J Control Release 2001; 70 :1-20.
[120] Courant T, Roullin Vg, Cadiou C, Delavoie f, molinari m, Andry mC, Chuburu f.
Development and physicochemical characterization of copper complexes-loaded pLgA
nanoparticles. Int J pharm 2009; 379 :226-234.
[121] Roy I, Vij N. Nanodelivery in airway diseases: challenges and therapeutic applications.
Nanomedicine 2010; 6 :237-244.
[122] Rytting e, Nguyen J, Wang X, Kissel T. biodegradable polymeric nanocarriers for
pulmonary drug delivery. expert Opin Drug Deliv 2008; 5 :629-639.
[123] Semete b, booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, Swai HS. In vivo
evaluation of the biodistribution and safety of pLgA nanoparticles as drug delivery
systems. Nanomedicine 2010; 6 :662-671.
[124] Semete b, booysen LI, Kalombo L, Venter JD, Katata L, Ramalapa b, Verschoor JA,
Swai H. In vivo uptake and acute immune response to orally administered chitosan and
peg coated pLgA nanoparticles. Toxicol Appl pharmacol 2010; 249 :158-165.
[125] murthy N, Thng YX, Schuck S, Xu mC, frechet Jm. A novel strategy for encapsulation
and release of proteins: hydrogels and microgels with acid-labile acetal cross-linkers.
J Am Chem Soc 2002; 124 :12398-12399.
[126] murthy N, Xu m, Schuck S, Kunisawa J, Shastri N, frechet Jm. A macromolecular
delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels.
proc Natl Acad Sci U S A 2003; 100 :4995-5000.
[127] Standley Sm, Kwon YJ, murthy N, Kunisawa J, Shastri N, guillaudeu SJ, Lau L, frechet
Jm. Acid-degradable particles for protein-based vaccines: enhanced survival rate for
tumor-challenged mice using ovalbumin model. bioconjug Chem 2004; 15 :1281-1288.
[128] Lundberg p, Langel U. A brief introduction to cell-penetrating peptides. J mol Recognit
2003; 16 :227-233.
[129] Shoyele SA, Cawthorne S. particle engineering techniques for inhaled biopharmaceuticals.
Adv Drug Deliv Rev 2006; 58 :1009-1029.
[130] Cohen JL, Almutairi A, Cohen JA, bernstein m, brody SL, Schuster Dp, frechet Jm.
enhanced cell penetration of acid-degradable particles functionalized with cell-penetrating
peptides. bioconjug Chem 2008; 19 :876-881.
[131] Liu Y, Ibricevic A, Cohen JA, Cohen JL, gunsten Sp, frechet Jm, Walter mJ, Welch mJ,
brody SL. Impact of hydrogel nanoparticle size and functionalization on in vivo
behavior for lung imaging and therapeutics. mol pharm 2009; 6 :1891-1902.
[132] Rossin R, muro S, Welch mJ, muzykantov VR, Schuster Dp. In vivo imaging of
64Cu-labeled polymer nanoparticles targeted to the lung endothelium. J Nucl med
2008; 49 :103-111.
[133] Holland Jp, Sheh Y, Lewis JS. Standardized methods for the production of high specific-
activity zirconium-89. Nucl med biol 2009; 36 :729-739.
[134] Keliher eJ, Yoo J, Nahrendorf m, Lewis JS, marinelli b, Newton A, pittet mJ,
Weissleder R. (89)Zr-labeled dextran nanoparticles allow in vivo macrophage imaging.
bioconjug Chem 2011; 22 :2383-2389.
[135] Rojas S, gispert JD, martin R, Abad S, menchon C, pareto D, Victor Vm, Alvaro m,
garcia H, Herance JR. biodistribution of amino-functionalized diamond nanoparticles.
In vivo studies based on 18f radionuclide emission. ACS Nano 2011; 5 :5552-5559.
Search WWH ::




Custom Search